Silica Coated Hollow α-Fe2O3 Derived from Fe-MIL-88A Metal Organic Framework (MOF) as an Efficient Catalyst for Enhanced Selective Catalytic Reduction (SCR) of NO with NH3

Junhyung Lee, Junho Chung, Seung-Yeop Kwak

Department of Materials Science and Engineering, Seoul National University 599 Gwanak-ro, Gwanak-gu, Seoul, Korea junhyunglee@snu.ac.kr; jjhds13@snu.ac.kr; sykwak@snu.ac.kr

Extended Abstract

Selective catalytic reduction (SCR) of nitrogen oxides (NOx) with NH₃ reducing agent is widely used to remove NOx that are emitted from stationary sources. However, the volatility, toxicity and easy deactivation of conventional V_2O_5 catalyst are limitations. Since the environmentally benign character, thermal stability and natural abundance, iron oxide have been explored for the SCR of NO with ammonia. However, these materials suffer from insufficient catalytic activity at low temperature and deactivation from H₂O and SO₂. ^{[1][2]} Hollow core-shell nenoareactors are the system which provide an isolated space with a unique chemical and physical environment. The thermal stability and catalytic activity have been enhanced by using these systems. ^[3]

In this work, rod shaped α -Fe₂O₃@SiO₂ core shell nanoreactors were prepared by the calcination from Fe-MIL-88A metal organic framework (MOF) for SCR of NO with NH₃ to enhance catalytic activity and to understand nanoreactor system. The morphology and structural properties of the catalysts were characterized using TEM, SEM, XRD, BET and EDS mapping analysis. Based on the results of HRTEM, the void of α -Fe₂O₃@SiO₂ core-shell particles. It revealed higher NO conversion than the bulk iron oxide and thermal stability. In addition, the morphology of α -Fe₂O₃@SiO₂ particles have an effect on the surface area and catalytic performance.

References

- [1] X. Mou, B. Zhang, Y. Li, L. Yao, X. Wei, D. S. Su, W. Shen, "Rod-shaped Fe₂O₃ as an efficient catalyst for the selective reduction of nitrogen oxide by ammonia," *Angew. Chem. Int. Ed.*, vol. 51, pp. 2989-2993, 2012.
- [2] S. Cai, H. Hu, H Li, L. Shi, D. Zhang, "Design of multi-shell Fe₂O₃@MnOx@CNTs for the selective catalytic reduction of NO with NH3: improvement of catalytic activity and SO2 tolerance," *Nanoscale*, vol. 8, pp. 3588, 2016.
- [3] J. Lee, S. M. Kim, I. S. Lee, "Functionalization of hollow nanoparticles for nanoreactor applications," *Nano Today*, vol. 9, pp. 631-667, 2014.