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Abstract – In this work, temperature patterns and profiles have been obtained in large 2-D groundwater scenarios, with constant and 

horizontal regional flow and thermal conditions that reproduce approximately real cases, such as the daily or seasonal variation of the 

soil surface temperature. For this purpose, a numerical model based on the network simulation method has been designed and applied to 

real scenarios to determine the correlation between derived temperature profiles and groundwater flow. The results of this first work 

allow to see more closely the possibility of addressing a much more complex problem, such as the determination of the regional velocity 

field from temperature profiles read from in situ wells. 
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1. Introduction 
The coupled problems of fluid flow and heat transport in porous media, particularly those related to underground 

hydrology, have aroused great interest in recent times for their application in the field of geothermal, i.e. the energy use of 

thermal sources in the subsoil [1, 2]. Their study has even led to the establishment by the scientific community of standard 

or benchmark problems that allow verifying numerical codes in this field since, in general, they have no analytical solution. 

Among these problems are those of Bénard, Yusa and Elder [3], which have given rise to numerous scientific publications. 

In all of them, temperature patterns or profiles are coupled to the velocity field, mainly because the flow equation contains a 

density-driven term. 

However, when the temperature range of the problem is narrow and the velocity field is essentially imposed by an 

external pressure gradient or piezometric levels (with negligible influence of flotation) that would cause a regional flow, the 

problem, although simpler in its mathematical model, can be potentially very useful. The straight profile of temperatures that 

would occur in the absence of regional flow under stationary conditions, away from the water flow inlet boundary (resulting 

in a constant heat flow to the bottom), would be distorted and curved by the effect of the horizontal drag when there is 

regional flow. Thus, at all times, the temperature profile with depth is determined by the thermal properties of the ground 

and the value of the regional flow, apart from the influence of the thermal boundary conditions of the scenario. If, as it 

actually happens, the outside temperature is a seasonal function of time, its profile in the vicinity of the ground surface 

changes continuously, but its experimental measurement could allow the calculation of regional water flow. This is the 

objective of the present communication, to determine the connection between the underground water flow and the form of 

the temperature profiles that can be measured in a well. This would allow us to consider in the future the determination of 

the regional velocity field from the reading (direct and hardly expensive) of temperature profiles in wells. 

The first approach to this problem consists in investigating the shape of the temperature profiles in a 2-D scenario of 

sufficient extension, with constant regional flow in the horizontal direction and thermal conditions that reproduce 

approximately real cases, such as harmonic variation of the soil surface temperature and constant temperature at the bottom 

of the domain. 

For this study, a numerical model has been designed based on the network simulation method, whose reliability has been 

verified in numerous engineering applications [4, 5]. The elaboration of the model is briefly introduced and it is applied to 

real scenarios to determine the characteristics of the correlation between the profiles obtained and the regional flows that 

determine them. 
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2. The physical and mathematical models 
Figure 1 is a physical scheme of the scenario. As for the mechanical problem, a regional water flow induces a 

constant velocity field (vo) throughout the domain. As for the thermal problem (which assumes the phenomena of 

diffusion and convection in the porous medium), the following boundary conditions are imposed: i) constant temperature 

of the inlet fluid (first class or Dirichlet condition at the left vertical boundary, x=0), ii) seasonally time-dependent 

temperature at the upper horizontal boundary (special first class condition at y=H), iii) zero heat flow at the bottom 

(second class or Neumann homogeneous condition at y=0), and iv) constant temperature condition at the flow outlet 

front, x=L. In order to eliminate the influence of the thermal flow output condition on the temperature profile, a 

sufficiently long horizontal domain has been adopted, reading these profiles in the previous region to the influence of 

this condition. The same precaution is taken regarding the influence of the fluid inlet temperature on the profile. These 

regions, before and after the profile measurement, depend on both the regional velocity and the thermal fluid properties. 

 

 
Fig. 1: Physical scheme of the problem. 

 

The mathematical 2-D model is formed by the following set of equations: 
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the oscillation. Eq. (5) is the initial temperature of the soil and eq. (6) the solution of the flow velocity field at the domain. 

This is the model studied in this work although it is planned to extend it to more complex scenarios in future works. For 

example, velocity field dependent on depth, water table at levels below the soil surface, scenarios with sloping bottoms that 

that imply the existence of vertical velocity components, convection and radiation incident fluxes on the soil surface, etc. As 

etc. As we will see below, from the point of view of the network model design, these new scenarios do not entail special 

restrictions since the network method [6] has successfully addressed problems of similar complexity [4, 5]. 

 

3. The network model 
This is designed based on the finite-difference differential equation that derives from the spatial discretization of 

governing eq. (1), retaining time as a continuous variable. For a volume element of an isotropic and homogeneous soil, this 

equation writes as 
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Fig. 2: Nomenclature of temperatures in the volume element. 

 

Now, we set the analogy between physical quantities ‘electric current  heat flux’ and ‘electric potential  temperature’. 

Using the nomenclature of Figure 2 for the volume element or cell, each addend of the former equation is assumed to be an 

electric current through a branch of the network (or electric circuit) that balances with the currents of the other addends in 

their respective branches in a common node. The voltage in this node, once the balance among currents is satisfied, is the 

temperature of the cell. The constitutive equation between current and voltage through the electric component implemented 

in each branch must fit the mathematical expression of the related addend. Defining the soil thermal diffusivity as D =
k

ce
 

(m2s-1) and re-organizing the above eq. (7), we have 
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The current Jt  is implemented by a capacitor of value C=1 since its constitutive equation is JC = C
dVC

dt
 while the 

terms  Jx,1, Jx,2, Jy,1 and Jy,2 do it with resistors of value Rx,1 = Rx,2 =
x2

2D
, Ry,1 = Ry,2 =

y2

2D
 since the constitutive 

equation of such passive element is given by JR =
VR

R
. Finally, Jv is implemented by a voltage-controlled current source 

(G), an active element of the circuit whose output, programmed by software, is given by the mathematical expression of 

Jv. The network of the cell, shown in Figure 3, extends to the entire domain through simple ideal contacts between 

adjacent cells. Moreover, boundary conditions have to be added. Thus, vertical sides, eq. (2), are implemented by 

constant voltage sources, as well as eq. (3) in the bottom side, where in the upper side, eq. (4), a time-dependent voltage 

source is needed. Finally, initial condition given by eq. (5) is implemented by charging the capacitors with an initial 

voltage of value Ts. 

 

 
Fig. 3: Network model of the cell (left) and voltage boundary condition (right). 

 

Once the model is introduced in a circuit simulation computer code (the free code Ngspice [7] is the one chosen in 

this work) it is run, giving the time-dependent solutions of the voltage (temperature) at all nodes and the currents (heat 

flux) at all branches. Thanks to the powerful computing algorithms implemented in these codes, the simulation provides 

a practically exact solution of the model, relegating errors to the mesh size chosen. For meshes above 50x50 cells, 

computation times are low (5-30 s) and errors fall below 1% [8], a generally accepted value in engineering. 

 

4. Applications 
Two different scenarios have been chosen. The first one has the following data: 

L= 40 m, H = 10 m, vo = 0.2 ms-1, k = 1 Jm-1s-1K-1, ce = 2.7x104 Jm-3K-1, D = 2.7x10-4 m2s-1  

To = 0 K, T(t) = 1 K, Ts = 0 K 

Nx = 80, x = 40/80= 0.5 m, Ny = 20, y = 10/20 = 0.5 m, Simulation time = 1000 hours. 

The simulation results, with a calculation time of around 20 s, are shown below. Thus, Figure 4 shows the 

temperature patterns for different simulation times. At 50 hours it can be seen that after about 20 meters from the left 

border, where the water flow comes from, a constant temperature profile is achieved, independent on the OX axis 

position. However, this is not a stationary situation, as we can see that at 100 hours the profile has evolved in depth (in 

this case the profile is more or less constant after 30 meters on the OX axis). It is around 500 hours when the stationary 

temperature profile is reached, since the thermal gradient is the same throughout the medium. However, the distance on 

the OX axis to reach the stationary situation rises to 100 meters (Figure 5) for which it has been necessary to extend the 

length L of the problem to 120 meters. 
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Fig. 4: Temperature patterns of the first scenario chosen (H=10m, L=40m, t=50, 100, 500 hours). 

 

 

 
Fig. 5: Temperature patterns of the first scenario chosen (H=10m, L=80, 120 m, t=500 hours). 
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In view of these data it is observed how the temperature profiles, at times long enough for the stationary situation 

to be reached, are initially dependent on the position and then become independent in the central region. Figure 6 shows 

the different depth-temperature profiles obtained in the previous scenario, for different OX distances (5, 40, 80 and 120 

meters) and for different times since the start of the problem (50, 100 and 500 hours). These last profiles (t = 500 hours) 

are the ones that would be expected to be registered if in a field study we measure the evolution of the temperature with 

the depth in a borehole or well located in the considered OX position.   
 

 
Fig. 6: Temperature profiles of the first scenario chosen. 

 

The second scenario differs from the first in the following data: 

L= 120 m, T(t) given in Figure 7, Nx = 120, x = 120/120= 1 m. 

 

 
Fig. 7: Periodic function of the temperature in the soil surface. 

 

For this second scenario, the stationary situation is never reached, since the temperature varies periodically in the 

upper boundary. However, what does happen is that after approximately 600 hours have elapsed, the temperature 

patterns and profiles begin to repeat continually, as long as we compare them at the same time in the cycle or period. 

Thus, in Figures 8 and 9 the depth-temperature patterns and profiles are represented for the moments immediately before 

the beginning of the change of the temperature in the upper side (multiples of hours 12 and 24 hours, endings of T = 0 

and T = 1, respectively). 
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Fig. 8: Temperature patterns of the second scenario chosen (H=10m, L=120 m, t=600, 660 hours). 

 

 

 
Fig. 9: Temperature profiles of the second scenario chosen. 

 

 

5. Conclusion 
The network method has been successfully applied to different scenarios of heat transport within a porous medium 

through which underground water flows. Through this technique, different temperature boundary conditions have been 

implemented, so that simulated scenarios are very close to the reality observed in this type of problems. 
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The tendencies observed in the temperature patterns and profiles have provided very valuable information, since 

the lengths and the times in which the stationary, or quasi-stationary, state is reached have been determined. 

The results obtained bring us closer to a horizon in which groundwater flux could be obtained from real field 

temperature readings. 
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