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Abstract – Nanomaterials such as carbon nanotubes and carbon nanofibers are used as reinforcement for concrete, enhancing its 

compressive and flexural strength, and durability, and providing additional properties such as electrical conductivity. Hence, CNT/CNF 

reinforced concrete composite material is multifunctional material which may be used in structural capacity as well as structural health 

monitoring purposes. Although this material can be superior to traditional concrete, extensive and costly procedures of fabrication are 

hindering its practical potential. Concrete mix design methods are commonly used during the design of such composites, however, since 

these methods cannot give direct connection between the recipe and the end-product, every composite must be put through testing and 

iteratively adjusted until the appearance of wanted results.  

This paper proposes application of artificial neural networks for predicting properties of CNT/CNF concrete composite materials. 

Artificial neural networks in mix design have been developed for various types of concrete, commonly to predict only compressive 

strength as the primary property of concrete. However, self-sensing concrete is used primarily for its piezoresistivity and enhanced 

strength is only the consequence of the existence of nanofillers. Hence, the paper investigates prediction of compressive and flexural 

strength as well as electrical resistivity of 468 concrete mixtures by developing 3 different datasets comprehended by 6 ANN models. 

The models show some interesting results and point toward the necessity of further investigations on this topic and possible 

improvements.  
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1. Introduction 
Carbon nanotubes (CNTs) and carbon nanofibers (CNFs) are a familiar topic within the field of structural health 

monitoring. These materials can be used as nanofillers in concrete, where their role is twofold. Firstly, when the percolation 

threshold is crossed, it is considered that electrically conductive network is formed in the insulating concrete matrix. 

Secondly, mechanical properties such as compressive and flexural strength are enhanced by the presence of nanofillers which 

have superior characteristics compared to the concrete matrix. So, these composite materials are used primarily as sensors 

for monitoring cracking and other structural damage while functioning as structural elements able to withstand extraordinary 

loading. One of the problems arising with practical implementation of CNT or CNF reinforced concrete is slow and relatively 

expensive fabrication. Namely, these materials are applied only after a process of adjusting the mixture recipe in terms of 

ingredients and weight fraction of nanofillers. Due to the possibility of various mishaps during fabrication, extensive testing 

procedure is necessary to establish mechanical properties of these composite materials, which leads to additional waste of 

time and funds.  

This paper proposes useful and more sustainable design method for CNT/CNF reinforced concrete that can be achieved 

through application of machine learning, more specifically, artificial neural networks. Machine learning methods are now 

present in the scientific community across all fields and areas of research. Among machine learning methods, artificial neural 

networks are the most prominent within the field of concrete mix design. Artificial neural networks (ANNs) are distinguished 

by the ability of solving complex problems that cannot always be mathematically described and by their flexibility, 

adaptability, and user-friendliness. ANNs may be applied for a variety of specific tasks and have shown themselves useful 

in mix design of various types of concrete. Most of the ANN models serve to predict the compressive strength as primary 

property of concrete, and other properties such as flexural strength [1-19], electrical properties [3,7,20-30], slump [31], elastic 

modulus [32], Poisson’s ratio [33], etc. are investigated seldomly. Because of the specific nature of CNT/CNF concrete 
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composite materials, the idea of the author is to investigate compressive strength, flexural strength, and electrical 

resistivity using ANN models. Using the traditional four-ingredient concrete reinforced with nanomaterials as a starting 

point, different models and new practice in concrete mix design may be developed, as well as further implementation of 

self-sensing concrete in regular civil engineering practice. 

 

2. Development of ANN Models 
Development of ANN models consisted of forming datasets, data analysis and processing, and building of ANN 

models. Data is collected from experimental investigations published in open access journals throughout the last decade. 

Artificial neural network models were developed using Matlab Neural Fitting tool.   

 
2.1. Self-sensing Concrete 

Research work consists of collecting data from available literature on compressive strength, flexural strength, and 

electrical properties of CNT/CNF reinforced concrete composite material. The data consists of results of laboratory 

testing, obtained from investigations chosen based on concrete ingredients. After the data is collected, it is checked, and 

inconclusive or somewhat strange results (outliers) are rejected while applicable results remained. Finally, three datasets 

are formed to show compressive strength, flexural strength, and electrical resistivity individually. It should be noted that 

tested electrical properties included electrical conductivity, resistivity, and/or resistance. All values were analytically 

transformed to electrical resistivity to form a comprehensive dataset. Total of 468 mixtures were collected from 35 

investigations [1-30,34-38]. Observed mixtures represent traditional four-ingredient concrete with addition of CNTs or 

CNFs and supporting materials for improved dispersion. Due to the presence of CNTs and CNFs, additional materials 

are used to avoid phenomena such as high-air content (foaming), segregation, and low dispersion quality. OPC with 

strength class of 42.5 MPa and 52.5 MPa is favourable for its purity, leading to minimal side effects. Water was distilled, 

sonicated, or tap, fine aggregate was natural or manufactured siliceous sand, and coarse aggregate was gravel or crushed 

limestone. Only additional material which was considered as a part of the mixture within datasets is superplasticizer 

since its weight goes as high as 2% of the cement weight, and it affects the amount of water which further affects 

electrical sensitivity of hardened concrete composite material. Materials and their weights are presented in Table 1. 

Nanomaterials are of high purity, commonly purchased in the form of powder. Materials used as support for the 

dispersion of nanomaterials are surfactants, as follows: polyethylene glycol aromatic imidazole (TNWDIS) [1,11,12], 

sodium dodecyl benzene sulfonate (NaDDBS, SDB) [8,25,26,34], lignosulfonic acid sodium salt (SLS) [20-24], sodium 

lauryl with defoamer (SLDS), Triton X-100 (TX), gum arabic (GA), and cetyltrimethylammonium ammonium bromide 

(CTB) in [34], polycarboxylate based surfactant (SFC) [3-6,14,15], Adva Cast 575 [10,16], polyvinylpyrrolidone (PVP) 

[11],  sodium dodecyl sulfate (SDS) [18,30], Dolapix PC67 [12]. Some dispersions are achieved without the help of 

surfactants [2,17,27,28,36,37]. These surfactant materials were not included as part of input data because of the 

negligible amounts they were used in, different procedures of dispersion not comprehended by the dataset, and the fact 

that they influence dispersion quality rather than final properties of concrete. Except for the weights of ingredients, 

common input neurons for all three datasets also included cement class and functionalization of nanomaterials with 0/1 

designations. Cement class was represented by 1 for 42.5 MPa and 0 for 52.5 MPa. Functionalization was comprehended 

only by its existence (yes=1; no=0), without going further into the exact nature of the process. 

 

Table 1. Summary of materials 

Material 
Minimum 

material/cement ratio 

Maximum 

material/cement ratio 

Minimum 

weight [kg/m3] 

Maximum 

weight [kg/m3] 

Cement - - 317.61 1875 

Water 0.2 0.79 121.6 789.48 

Fine aggregate 0 6 0 1994.4 

Coarse aggregate 0 2.21 0 1015 

Superplasticizer 0 0.02 0 27.27 
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CNTs 0 0.02 - - 

CNFs 0 0.025 - - 

 

Mortar and concrete mixtures were obtained through several different processes. Composite material fabrication in all 

experimental investigations followed the algorithm of mixing the dispersion, achieving satisfactory dispersion, mixing in the 

dispersion with dry concrete ingredients and water, moulding, and curing until testing. Although dispersion processes widely 

differentiate, quality of dispersions was verified by SEM analysis. Mixing of dispersion and concrete was done manually or 

automatically using mechanical agitator and/or rotary mixer. Geometry of moulding varies for different mixtures and 

specimens, depending on the nature of testing. Demoulding age was addressed within the dataset, where the 24 h duration 

was denominated as 0 and 48 h as 1. Curing duration varied depending on the testing date and was provided accordingly. 

Age of specimens was included in the input. Curing durations of 3, 7, 14, 20, 21, 28, 90, and 120 days are noted as a 

significant factor on the final strength and conductivity of specimens. Some investigations dealing with electrical testing 

addressed the issue of polarization effect. Polarization effect was addressed after the curing process by testing the variation 

of current intensity [20-24]; by drying the specimens at temperatures of 60°C and/or 95°C for 3 days [6]; and by fixing the 

current intensity with an AC/DC current source [27]. Flexural strength was tested on parallelepiped specimens with different 

sets of dimensions (Table 2) which have been exposed to three-point or four-point standard bending tests. Testing of 

compressive strength was carried out by standard compression press on parallelepiped and cylindrical specimens. 

Experimental investigations which examined electrical properties of CNT/CNF reinforced concrete composite material 

followed testing procedures of two-probe and four-probe method. Results of electrical tests included electrical resistance, 

resistivity, or conductivity. Hence, all results were analytically transformed into a comprehensive set giving only values of 

electrical resistivity. 

 
2.2. ANN models 

Datasets for ANN models were made based on information about mixtures, specimen preparation, testing procedures and 

results of testing. Three independent datasets were made for each property which represents an output signal. All datasets 

have 11 common input neurons representing the weights of cement (CEM), water (WAT), fine aggregate (FA), coarse 

aggregate (CA), and superplasticizer (SPL) per cubic meter of concrete, weight fraction of nanomaterials relative to the 

weight of cement (CNT, CNF), cement class (CLASS), functionalization (FUNC), demoulding age (D-AGE), age of 

specimen at the time of testing (AGE). Neurons which differentiate between datasets represent relevant specimen geometry 

and output, as it is shown in Table 2.  

 

Table 2. Additional neurons per each dataset 

Data 

set 
Input Input Input Input Input Input Input Output 

 Total # 

of tuples 

Min. output 

value 

Max. output 

value 

1 

C-S_A C-S_B C-S_C C-S_D C-S_E C-S_F C-S_G 

COM-S 346 4.4 MPa 152 MPa   4x4x8 

cm 

 4x4x4 cm 5x5x5  

cm 

7x7x7 cm 20x10 cm 15x15 

cm 

7.5x15 

cm 

2 

C-S_A C-S_B C-S_C C-S_D C-S_E   

FLEX-S 219 0.5851 MPa 16.7 MPa  4x4x16 

cm 

 2.5x4x8 

cm 

2x2x8  

cm 

10x50x50 

cm 

15x15x15 

cm 

3 
C-S_A LENGTH      

RESIST 173 10 Ω∙cm 
84100 

Ω∙cm min/max min/max 

 

All values of input and output except of CLASS, FUNC, and D-AGE are normalized by min/max normalization with 

[0,1] value interval. Datasets are divided into training, testing and validation subsets. Division ratios between subsets for 

training/testing/validation are given in Table 3, while tuples are randomly divided with minimal repetition. All ANN models 

are based on similar architecture. Considering the size of datasets, Levenberg-Marquadt (LM) algorithm is commonly used 
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for moderately sized network with up to a few hundred weights. Activation function is sigmoid because of the smooth 

gradient and functioning within [0,1] interval. Initial weights and biases are automatically assumed by the fitting tool and 

iteratively adjusted as the learning proceeds with the backpropagation. Model parameters are automatically prescribed by 

the Matlab neural fitting tool. In this case, the prescribed network is “shallow” meaning that there is only one hidden layer, 

while the number of hidden neurons is adjusted. Number of neurons in the hidden layer is a parameter which is set according 

to the number of input neurons and overall size of the network. Eq. (1) and Eq. (2) define the number of neurons of the 

hidden layer according to [39] and were adopted for the ANN models. 

 

𝑁ℎ = 𝑁𝑖 (1) 

𝑁ℎ = 𝑁𝑖 ∙ 2 + 1 (2) 

  

To resume, there are 2 models for every dataset giving a total of 6 models. Each model is feed-forward backpropagation 

shallow neural network with sigmoid activation function, differentiating in subset ratios and number of neurons in the hidden 

layer. Table 3 is showing parameters describing all models.  

 

Table 3. Summary of parameters describing all ANN models. 

Model 
Input 

nodes 

Hidden 

layer 

Hidden 

nodes 

Testing 

[%] 

Training 

[%] 

Validation 

[%] 

Max. 

epoch 
Algorithm 

Activation 

function 

COM-S1 18 1 18 80 (276) 10 (35) 10 (35) 1000 trainlm sigmoid 

COM-S2 18 1 37 80 (276) 10 (35) 10 (35) 1000 trainlm sigmoid 

FLEX-S1 16 1 16 80 (175) 10 (22) 10 (22) 1000 trainlm sigmoid 

FLEX-S2 16 1 33 80 (175) 10 (22) 10 (22) 1000 trainlm sigmoid 

RESIST1 13 1 13 85 (147) 10 (17) 5 (9) 1000 trainlm sigmoid 

RESIST2 13 1 27 85 (147) 10 (17) 5 (9) 1000 trainlm sigmoid 

      

3. Results and discussion 
Flowchart describing the process of developing an ANN model is shown in Figure 1. After generating the models, 

mean squared error (MSE) and coefficient of regression (R) are investigated and compared.  

 

 
 

Figure 1. Flowchart for model development Figure 2. Regression plot for model COM-S1 
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Figure 3. Regression plot for model FLEX-S2 Figure 4. Regression plot for model RESIST2 

 

Table 4 shows results of training the models. Regression coefficients are showing that all models are more or less 

successful with matching generated and target output value. However, there are some differences appearing regarding the 

mean square error factor and especially number of iterations needed for the generalization of the network.  

Table 4. Results of training for all ANN models 

Model R MSE Epoch 

COM-S1 0.9878 0.000935 52 

COM-S2 0.9713 0.00297 17 

FLEX-S1 0.9125 0.00915 12 

FLEX-S2 0.9235 0.00781 24 

RESIST1 0.9123 0.00113 20 

RESIST2 0.9752 0.00766 60 
 

Small number of training iterations may be prescribed to the small 

sample sizes of all three dataset, and hence subsets. Even so, 

model COM-S1 and RESIST2 have converged at a fairly high 

epoch number comparing to other models. Since the number of 

hidden neurons differentiate between these two models, the 

occurrence may be prescribed to higher quality of data in case of 

COM-S1. Model COM-S1 has the biggest sample size (346 

tuples), and number of hidden neurons is equal to the number of 

input neurons, so, relatively longer generalization period may be 

caused by the presence of outliers in the sample. 

Model RESIST2 has the smallest sample size with 173 tuples. Number of hidden neurons for this model is 27 which is 

relatively high giving that there are 13 input neurons and smaller sample, which may be causing more iterations during the 

training process. Best validation performance occurs just at epoch 54, however the performance plot shows smooth MSE 

curve per epoch. Models FLEX-S1 and FLEX-S2, with flexural strength as the output, have shown the weakest performance 

overall. Regression coefficient is the lowest in both models, mean square error is highest, and the number of iterations is not 

very conceivable in terms of accomplishing usable generalization. This may point at various problems including sample size, 

subset division, number of hidden neurons, and data quality. Supposedly, results would differ in case of varying subset 

division in combination with variations of the number of hidden neurons and changing the activation function to hyperbolic 

tangent function. 
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4. Conclusion 
This paper describes the development of 6 ANN models based on 35 experimental investigations of CNT or CNF 

reinforced concrete. Investigation considered only experimental results that are usable for it, excluding non-standardized 

testing, outlying or unacceptable results, etc. For purposes of building ANN models, three different datasets were 

formed, first giving compressive strength, second giving flexural strength, and third giving electrical resistivity of the 

concrete composite material as output signals. All models have similar architectures with only one hidden layer. Each 

dataset was used for training 2 models differing in the number of hidden neurons. ANN models were developed, trained, 

tested, and validated using Matlab neural fitting tool. Results showed that models overall have relatively good behaviour, 

however, small number of iterations may imply false positive results. In order to get clearer picture of the condition of 

the network, more variations and additional investigations of each dataset should be made. 

This investigation was made as the initial stage of testing the application of ANNs for CNT or CNF reinforced 

concrete composite materials. Experimental results used here present the baseline for development of numerical 

simulations for material behaviour of these composites. Future work includes developing numerical models using 

ANSYS and using the results of finite element model analysis for building new datasets which will accommodate 

comprehensive ANN models with three outputs, namely, compressive strength, flexural strength, and electrical property. 

Hopefully, this work will show that fabrication of nano-reinforced self-sensing materials can be more feasible and usable 

for practical purposes and inexperienced users. Through application of ANN, real-time monitoring of RC structures 

could become more cost-efficient, reach further practices, and not represent a luxury intended only for a privileged few. 
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