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Abstract - In this paper, a structural reliability assessment of a structural offshore considering the effect of the cumulative damage 
caused by fatigue at the end of an instant of time is presented. The reliability is expressed in terms of the confidence factor. The 
confidence factor is obtained for three kinds of approaches: a) without damage, b) the structural capacity is reduced over time and c) 
the structural capacity and demand vary over time. The uncertainties related to the occurrence of operational and storms loadings as 
well as epistemic uncertainties are considering. A fixed offshore jacket platform located in the Gulf of Mexico is used to estimate the 
reliability indicators. The structural demand and capacity are evaluated by considering operational and storm conditions. The damage 
is defined by the crack growth in tubular members due to fatigue. Undesirable reliability levels are obtained after 9 years of the offshore 
construction. The evaluation of the structural reliability levels helps to make decisions about design o re-design the structural system.  
 
Keywords: Confidence factor, reliability, fatigue, fixed offshore jacket platform, cumulative damage. 
 
1. Introduction 

The assessment of structural reliability implies estimating events whose occurrence is uncertain. Moreover, it is 
difficult to predict when an element or structural system present an undesirable reliability level. On the other hand, if the 
structural elements are manufactured in the same lot and there are installed by the same engineer. Additionally, the 
structure is under identical operating and environmental conditions, there is a high probability that all components fail at 
different times. Therefore, in handling events whose occurrence is not deterministic, the solution requires applying 
probability concepts. Then, these events can be estimated quantitatively, and it is necessary to implement mathematical 
tools that allow estimating the reliability levels. 

A fixed offshore platform is a structure that is structured by tubular steel sections, and it is supported by pile 
foundations; at the top of the structure, it can find an area for installing drilling equipment, production facilities or living 
areas. The offshores are exposed to different loads such as seismic, wind, sea current, waves, and others. 

In order to prevent an undesirable behaviour level, several studies have been developed to estimate the structural 
reliability. [1] exposed a method to calculate the reliability index which considers the effect of fatigue and extreme stress. 
[2] proposes a reliability approach for inspection by considering fatigue and the corrosion effect. [3] proposed a method 
for measuring structural reliability considering fatigue. Some authors emphasize the importance of representing all the 
uncertainties to estimate the structural reliability [4], [5]. [6] exposed a method for assessing the reliability due to seismic 
loadings. The implementation of artificial neural networks has been combined with Monte Carlo simulations to optimate 
the structural reliability on fixed platforms located in of the Persian Gulf, Iran [7], and the Bohai Sea, China [8]. 

In Mexico, Hurricane Roxanne occurred in 1995 produced the need to inspect a group of more than 200 marine 
structures installed in the Gulf of Mexico. In accordance with the above, [9] presented a report of damage that include 
dents, cracks, and twisted members that required repair actions in 26 platforms. Moreover, several approaches have been 
proposed to calculate the structural reliability in offshore platforms located in Campeche Bay of Mexico. [10] proposed a 
framework to estimate the failure probability in offshore structures using Monte Carlo simulations. [11] propose an 
approach to estimate the structural reliability by considering the degradation of the capacity over time. [12], [13] estimate 
the structural reliability considering that the structural capacity and demand vary over time.  

In this study, the structural reliability is estimated in an offshore platform located in the Bay of Campeche in the Gulf 
of Mexico. The structural reliability is expressed in terms of the expected number of failures and confidence factor over 

https://www.powerthesaurus.org/characterize/synonyms


 
 

 
 

 
 

 
ICSECT 120-2 

time. Three cases are considered: a) without damage, b) the structural capacity is reduced over time c) the structural 
capacity and demand vary over time. 

 
2. Structural reliability assessment without damage  

The mean annual failure rate can be estimated as follows [14], [15], and [16]: 
 

𝐸𝐸(𝑣𝑣𝐹𝐹) = �−
𝑑𝑑𝑣𝑣𝐷𝐷(𝑑𝑑)
𝑑𝑑𝑑𝑑

�𝑃𝑃(𝐶𝐶 ≤ 𝑑𝑑)�𝑑𝑑𝑑𝑑 (1) 

 
where 𝐸𝐸(𝑣𝑣𝐹𝐹) corresponds to the annual rate of structural failure; 𝑑𝑑𝑣𝑣𝐷𝐷(𝑑𝑑)

𝑑𝑑𝑑𝑑
 represents the derivative of the demand 

hazard curve; 𝑃𝑃(𝐶𝐶 ≤ 𝑑𝑑); represents the probability that the structural capacity, 𝐶𝐶, is less than or equal to a given 
value, 𝑑𝑑. In order to solve Eq. (1),  [16], [17] and [18] assume the following hypotheses: 

 
• The hazard curve, 𝑣𝑣(𝑦𝑦), is represented for the intensity of interest in the function (𝑦𝑦) = 𝑘𝑘𝑦𝑦−𝑟𝑟; where 𝑘𝑘 

and 𝑟𝑟 are parameters that define the shape of the environmental hazard curve. 
• The median of structural demand, 𝐷𝐷�, presents a log-normal distribution with a variance of the natural 

logarithm of 𝐷𝐷�, equal to 𝜎𝜎𝑙𝑙𝑙𝑙𝐷𝐷|𝑦𝑦
2  [19]. 𝐷𝐷� can be estimated as 𝐷𝐷� = 𝑎𝑎 ∙ 𝑦𝑦𝑏𝑏 where  𝑎𝑎 and 𝑏𝑏 are parameters 

that define the shape of the median of structural demand. 
• The median of the structural capacity, �̂�𝐶,  follows a log-normal distribution function, with a variance of 

the natural logarithm of �̂�𝐶, equal to 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙2 . 
 

Considering the hypothesis and including the epistemic uncertainties, the expected value of 𝑣𝑣𝐹𝐹 can be estimated 
as follows [20]: 

 

𝐸𝐸(𝑣𝑣𝐹𝐹) = 𝑘𝑘(𝑦𝑦𝑐𝑐̂)−𝑟𝑟 exp �
𝑟𝑟2

2𝑏𝑏2
�𝜎𝜎𝑙𝑙𝑙𝑙𝐷𝐷|𝑦𝑦

2 + 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙2 + 𝜎𝜎𝑈𝑈𝐷𝐷2 + 𝜎𝜎𝑈𝑈𝑙𝑙2 �� (2) 

where 𝑦𝑦𝑐𝑐̂ = ��̂�𝑙
𝑎𝑎
�
1
𝑏𝑏 is the intensity associated with the median of the limit state of the capacity, �̂�𝐶;  𝜎𝜎𝑙𝑙𝑙𝑙𝐷𝐷|𝑦𝑦

2  and 
𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 
2 are the variances of the natural logarithms of structural demand, 𝐷𝐷, and structural capacity, 𝐶𝐶;  𝜎𝜎𝑈𝑈𝐷𝐷2  and 𝜎𝜎𝑈𝑈𝑙𝑙2  

represent the variances of the epistemic uncertainties associated with demand and capacity, respectively. [16] assume 
that the mean annual failure rate, v�𝐹𝐹, is less or equal to a permissible value, 𝑣𝑣0. Based on the above and making some 
algebraic arrangements, the following equation is obtained: 

 
𝜙𝜙C� ≥ 𝛾𝛾D�𝑣𝑣0 (3) 

 
where 𝜙𝜙 is the capacity reduction factor, 𝛾𝛾 is the demand intensification factor; both expressed are as follows: 

 
From Eq. (3), the confidence factor is deduced: 
 

λconf =
𝜙𝜙C�

𝛾𝛾D�𝑣𝑣0
 (4) 
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3. Structural reliability considering the variation of the structural capacity  
[21] provided simplified expressions to obtain the expected number of failures and the confidence level 

considering that the structural capacity is reduced over time. The authors proposed the following expression to 
estimate the expected number of failures as follows:  

𝜂𝜂𝐿𝐿(𝑡𝑡,∆𝑡𝑡) = 𝑘𝑘�
𝐶𝐶�(𝑡𝑡)
𝑎𝑎 �

−𝑟𝑟

exp �
𝑟𝑟2

2𝑏𝑏2 �𝜎𝜎�𝑙𝑙𝑙𝑙𝐷𝐷�𝑦𝑦𝐶𝐶�(𝑡𝑡)�
2 + 𝜎𝜎

�𝑙𝑙𝑙𝑙𝐶𝐶�t�
2 + 𝜎𝜎�𝑈𝑈𝐷𝐷�t�

2 + 𝜎𝜎�𝑈𝑈𝐶𝐶�t�
2 ��Ω𝐿𝐿 (5) 

where �̂�𝐶(𝑡𝑡) = 𝛼𝛼 + 𝛽𝛽𝑡𝑡; Ω𝐿𝐿 is the correction factor, it is expressed as follows: 

Ω𝐿𝐿(𝑡𝑡,∆𝑡𝑡) =
(𝛼𝛼 + 𝛽𝛽𝑡𝑡)

𝛽𝛽
𝑏𝑏

(𝑏𝑏𝑡𝑡 − 𝑟𝑟) ��1 +
𝛽𝛽∆𝑡𝑡
𝛼𝛼 + 𝛽𝛽𝑡𝑡

�
1−𝑡𝑡𝑏𝑏

− 1� 

 

(6) 

To obtain the confidence factor, 𝜆𝜆𝑐𝑐𝑐𝑐𝑙𝑙𝑓𝑓𝐿𝐿(𝑡𝑡,∆𝑡𝑡), over time, the authors make some mathematical arrangements, 
and they propose the following expression: 

𝜆𝜆𝑐𝑐𝑐𝑐𝑙𝑙𝑓𝑓𝐿𝐿(𝑡𝑡,∆𝑡𝑡) = �
𝜙𝜙C�

𝛾𝛾D�𝑣𝑣0
� �
Ω𝐿𝐿(𝑡𝑡,∆𝑡𝑡)

∆𝑡𝑡
�
−𝑏𝑏𝑟𝑟

 (7) 

 
4. Structural reliability considering the variation of the structural capacity and demand  

[12] propose simplified expressions that consider the variation of the structural capacity and demand over time. 
The authors proposed the following expressions:   

 

𝜂𝜂𝐿𝐿𝐿𝐿(𝑡𝑡, 𝑡𝑡 + 𝛥𝛥𝑡𝑡) = 𝑘𝑘 �
𝛼𝛼 + 𝛽𝛽𝑡𝑡
𝑒𝑒 + 𝑓𝑓𝑡𝑡

�
−𝑟𝑟𝑏𝑏

exp �
𝑟𝑟2

2𝑏𝑏2
�𝜎𝜎𝑙𝑙𝑙𝑙𝐷𝐷|𝑦𝑦

2 + 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙2 + 𝜎𝜎𝑈𝑈𝐷𝐷2 + 𝜎𝜎𝑈𝑈𝑙𝑙2 �� Ω𝐿𝐿𝐿𝐿(0,𝛥𝛥𝑡𝑡) (8) 

 
where Ω𝐿𝐿𝐿𝐿 is the correction factor, it is expressed as follows: 

Ω𝐿𝐿𝐿𝐿(0,𝛥𝛥𝑡𝑡) = 𝑏𝑏𝑏𝑏
𝛽𝛽(𝑏𝑏−𝑟𝑟) �

𝑎𝑎𝛽𝛽
−𝑏𝑏𝑓𝑓+𝛽𝛽(𝑒𝑒+𝑓𝑓𝑡𝑡)

�
−𝑟𝑟𝑏𝑏 �−𝐹𝐹(𝐴𝐴,𝐵𝐵;𝐶𝐶; 𝑡𝑡) + �1 + 𝑓𝑓𝛽𝛽∆𝑡𝑡

𝛽𝛽(𝑒𝑒+𝑓𝑓𝑡𝑡)
�
−𝑟𝑟𝑏𝑏 �1 + 𝛽𝛽∆𝑡𝑡

𝑏𝑏
� ∙ �𝑏𝑏+𝛽𝛽∆𝑡𝑡

𝑏𝑏+𝑓𝑓∆𝑡𝑡
�
−𝑟𝑟𝑏𝑏 ∙

� 𝑏𝑏
𝑒𝑒+𝑓𝑓𝑡𝑡

�
−𝑟𝑟𝑏𝑏 𝐹𝐹(𝐴𝐴,𝐵𝐵;𝐶𝐶; 𝑡𝑡 + ∆𝑡𝑡)�  

(9) 
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The hypergeometric function 𝐹𝐹(𝐴𝐴,𝐵𝐵;𝐶𝐶; 𝑡𝑡) in Eq. (9) is solved by using the hypergeometric series [22], [23]: 

𝐹𝐹(𝐴𝐴,𝐵𝐵;𝐶𝐶; 𝑥𝑥) = 1 +
𝐴𝐴𝐵𝐵
1!𝐶𝐶

𝑥𝑥 +
𝐴𝐴(𝐴𝐴 + 1)𝐵𝐵(𝐵𝐵 + 1)

2!𝐶𝐶(𝐶𝐶 + 1) 𝑥𝑥2

+
𝐴𝐴(𝐴𝐴 + 1) … (𝐴𝐴 + 𝑙𝑙 − 1)𝐵𝐵(𝐵𝐵 + 1) … (𝑙𝑙 + 1)

𝐶𝐶(𝐶𝐶 + 1) … (𝐶𝐶 + 𝑙𝑙 − 1)𝑙𝑙!
𝑥𝑥𝑙𝑙 

(10) 

where: 

𝐴𝐴 = 1 −
𝑟𝑟
𝑏𝑏

;𝐵𝐵 = −
𝑟𝑟
𝑏𝑏

;𝐶𝐶 = 2 −
𝑟𝑟
𝑏𝑏

; 𝑥𝑥(𝑡𝑡) =
𝑓𝑓(𝛽𝛽′𝑡𝑡 + 𝛼𝛼)
𝑓𝑓𝛼𝛼 − 𝑎𝑎𝛽𝛽′

; 𝑥𝑥(𝑡𝑡 + ∆𝑡𝑡) =
𝑓𝑓(𝛽𝛽′(𝑡𝑡 + ∆𝑡𝑡) + 𝛼𝛼)

𝑓𝑓𝛼𝛼 − 𝑎𝑎𝛽𝛽′
 

 
To obtain the expression of the confidence factor, 𝜆𝜆𝑐𝑐𝑐𝑐𝑙𝑙𝑓𝑓𝐿𝐿𝐿𝐿, [12] obtained the confidence factor, 𝜆𝜆𝑐𝑐𝑐𝑐𝑙𝑙𝑓𝑓𝐿𝐿𝐿𝐿,  as 

follows:  

𝜆𝜆𝑐𝑐𝑐𝑐𝑙𝑙𝑓𝑓𝐿𝐿𝐿𝐿(𝑡𝑡,∆𝑡𝑡) = �
𝜙𝜙C�

𝛾𝛾D�𝑣𝑣0
� �
Ω𝐿𝐿𝐿𝐿(𝑡𝑡,∆𝑡𝑡)

∆𝑡𝑡
�
−𝑏𝑏𝑟𝑟

 (11) 

4. Illustrative example  
The reliability indicators are estimated in an offshore jacket platform located in Campeche Bay in the Gulf of 

Mexico. Three different approaches are considering: a) without damage, b) the structural capacity is reduced over 
time, and c) both the demand and capacity vary over time. The structure is 72.5 m high, and the water depth is 66 m 
(see Fig. 1); mean mechanical properties are considered for tubular A-36 structural steel members. The NRF-003-
PEMEX-2000 code [24] facilitates the environmental conditions of waves, wind, and marine currents for the site. 
Figs. 2, 3, and 4 show the environmental hazard curves; those curves are fitted employing the cumulative probability 
function of Gumbel for Ku site. 

 

 

 
 
 
 

 

Fig. 1. Offshore fixed platform Fig. 2. Sea current hazard curve 
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Fig. 3. Wind speed hazard curve Fig. 4. Wave hazard curve 

 
 
 

4.1 Fatigue analysis 
The fatigue affects the behaviour of the offshore structures due to there are exposed to environmental loads such 

as operational and storm conditions. The effect of fatigue can lead to the failure of the structural elements and then 
the failure of the structural system. The statistical data used for the simulation of crack growth are taken from [10]. 
The estimation of crack growth under random loadings are obtained by using the modified differential equation [25]: 

 
𝑑𝑑𝑎𝑎´
𝑑𝑑𝑡𝑡

= 𝐶𝐶(∆𝐾𝐾𝑚𝑚𝑟𝑟)𝑚𝑚𝑣𝑣´ (12) 

∆𝐾𝐾𝑚𝑚𝑟𝑟 = 𝑌𝑌𝑆𝑆𝑚𝑚𝑟𝑟�𝜋𝜋𝑎𝑎′ (13) 

 
where 𝐶𝐶 and 𝑚𝑚 are parameters that depend on the material properties, ∆𝐾𝐾𝑚𝑚𝑟𝑟 is the mean stress intensity interval, 𝜈𝜈´ 
is the rate of positive crosses by zero, 𝑌𝑌 is the geometric correction factor [26], 𝑆𝑆𝑚𝑚𝑟𝑟 is the mean stress interval of the 
random response of the elements [27] and 𝑎𝑎´ is the crack size. In this equation, the random load is replaced by an 
equivalent cyclic load whose amplitude and frequency are expressed as a function of the mean properties of the 
random process. Substituting Eq. (13) in Eq. (12) and making some algebraic arrangements, the following expression 
results as follows:  
 

�
𝑑𝑑𝑎𝑎

�𝑌𝑌√𝜋𝜋𝑎𝑎′�
𝑚𝑚 = 𝐶𝐶𝑆𝑆𝑚𝑚𝑟𝑟𝑚𝑚 𝑣𝑣′𝑡𝑡

𝑎𝑎𝑓𝑓

𝑎𝑎0
 

(14) 

where 𝑎𝑎0 is the initial crack size and 𝑎𝑎𝑓𝑓, is the final crack size after 𝑁𝑁 cycles. The crack simulation was obtained by 
the Eq. (14). The probabilistic estimation of the crack growth due to fatigue is estimated by using the Monte Carlo 
simulation technique.  

The Pierson-Moskowitz spectrum [28] is used to express the sea energy due to the transfer of forces from the 
wind. For the wave simulation, the sea surface, ℎ, is represented as a stationary, homogeneous, Gaussian process, 
which can be expressed as a linear superposition of regular waves with random generation at different phase angles, 
𝑓𝑓, with a uniform distribution between 0 and 2𝜋𝜋. From the normalized derivative of the wave hazard curve, it is 
considered that the maximum wave height corresponding to a storm condition presents a Gumbel-type distribution 
and that the arrival times between storms follow an exponential distribution. 
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According to the above, in order to estimate the crack evolution in the tubular joints, it is necessary to develop 
the following procedure to obtain the modified Paris and Erdogan equation as follows: 

 
1. Identification of the joints that contribute more in the global capacity by means of non-linear static analysis. 
2. The critical hot spots are determined. 
3. Non-linear dynamic analysis "step by step" in the structure using a set of simulated waves, wind speeds and 

sea currents for the return period is applied. 
4. The stories of the mechanical elements in the critical joints are obtained. Then, the effective stress, 𝜎𝜎𝑒𝑒𝑓𝑓, are 

estimated [29]. 
5. The number of cycles with rate of zero positive are obtained.  
6. Steps 3 through 5 are executed for each return period. 
7. The mean values and its standard deviations of the mean stress interval, 𝑆𝑆𝑚𝑚𝑟𝑟 , and the rate of positive zero 

𝑣𝑣´, are obtained for each return period. 
8. The mean values of stress interval, 𝑆𝑆𝑚𝑚𝑟𝑟, and the rate of zero positive, 𝑣𝑣′, are estimated by 𝑎𝑎(ℎ𝑚𝑚á𝑥𝑥)𝑏𝑏. 
 
After obtained the variables required by the modified Paris and Erdogan equation, the crack size is estimated as 

follows 
 
1. The initial crack size is set over time, 𝑡𝑡 = 0 . 
2. Simulate a timeout between storms. 
3. Simulate a maximum wave height for a storm, considering the derivative of the wave hazard curve. 
4. Estimate the mean, µ, and standard deviations, 𝜎𝜎, of  𝑆𝑆𝑚𝑚𝑟𝑟 and 𝑣𝑣′; given ℎ𝑚𝑚á𝑥𝑥. 
5. Calculate the crack size, 𝑎𝑎 , for operation waves. 
6. Calculate the crack size for storm swell. The final crack size in service condition is considered as the initial 

condition for calculating the storm crack.  
7. Steps 2 through 6 are performed while 𝑎𝑎 is smaller than the section thickness.  
8. Steps 1 through 7 are repeat 
9. The size of the crack, 𝑎𝑎, its µ, and 𝜎𝜎 is calculated for each time, assuming a lognormal distribution. 
 
Once obtained the size crack in time, there is consider that the structural deterioration in the platform is presented 

by the appearance of cracks in the tubular joints. [30] propose that the capacity of the intact joint, 𝑃𝑃𝑘𝑘, is modified by 
a linear reduction factor as follows:  

 

𝑃𝑃𝑐𝑐 = 𝑃𝑃𝑘𝑘 �1 −
𝐴𝐴𝑐𝑐𝑟𝑟𝑎𝑎𝑐𝑐𝑘𝑘
𝐴𝐴𝑗𝑗𝑐𝑐𝑗𝑗𝑙𝑙

� 
(15) 

where 𝑃𝑃𝑐𝑐 is the remaining capacity of the cracked joint, 𝑃𝑃𝑘𝑘 is obtained based on [29], 𝐴𝐴𝑐𝑐𝑟𝑟𝑎𝑎𝑐𝑐𝑘𝑘 is the area of the crack 
and 𝐴𝐴𝑗𝑗𝑐𝑐𝑗𝑗𝑙𝑙 corresponds to the cross-section area.  

 
4.2 Evaluation of structural capacity over time 

The structural capacity is obtained by means of non-linear static analysis "push-over", using fifty simulated 
lateral loadings profiles. The load profiles are used to describe the acting forces when the simulated waves produce 
the maximum base shear. The capacity reduction is given by the appearance of a crack in the tubular joints. According 
to the above,  Fig. 5 a. shows the median of the capacity, Ĉ, expressed in terms of the global displacement. 
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4.3 Evaluation of structural demand over time 
The structural demand is estimated by subjecting the offshore platform to a series of dynamic “step-by-step” analyses. 

A set of fifty simulated waves associated with different maximum wave heights was used; the simulation of crack growth 
using in the preceding section is also used in this section. Fig. 5 b shows the median of the structural demand for a given 
wave height, the median of the structural demand is fitted as 𝐷𝐷� = (6E− 08)(ℎ𝑚𝑚á𝑥𝑥)𝑏𝑏 ; for the case of without damage and 
for the case where the reduction of the structural capacity is considered. For the case that the structural capacity and 
demand vary over time, the following expression is as 𝐷𝐷�(∆𝑡𝑡) = (6E − 08 + 4.1E − 09∆𝑡𝑡) ∙ ℎ𝑚𝑚á𝑥𝑥

4.6. 
 

 
a) 

 
b) 

Fig. 5. a) Capacity and b) demand over time 
 

4.4 Expected number of failures 
In order to calculate the expected number of failures, it is considering a value of  𝜎𝜎𝑈𝑈𝐷𝐷2 = 𝜎𝜎𝑈𝑈𝑙𝑙2 = 0.15 [31] for epistemic 

uncertainties. The parameters 𝑘𝑘 and 𝑟𝑟 are equal to 𝑘𝑘 =  8114.47 and 𝑟𝑟 =  5.2. Fig. 6a shows the expected number of 
failures evaluated for three cases: a) without damage, b) the structural capacity is reduced over time c) the structural 
capacity and demand varies over time. It is observed that for instants of time less than 5 years, the expected number of 
failures present similar values between the three cases. Once the 5 years have been exceeded, it can be seen how the 
expected number of failures increases when the variation in capacity and demand over time is considered. The expected 
number of failures increases up to 124% when the variation of capacity over time is considered. On the other hand, the 
expected number of failures increases up to 212% between 0 years (without damage) and 20 years when the variation in 
capacity and demand over time is considered. The above implies that the structure experiments an increment in the 
expected number of failures about 88% when the variation of the demand over time is considered compared with the case 
b.  

 
4.5 Confidence factor 

The confidence factor over time is calculated by considering the cases a) without damage, b) the structural capacity 
is reduced over time c) the structural capacity and demand vary over time by using the Eqs. (4), (7), and (11), respectively. 
Fig. 6b shows the confidence factor for the three cases. In the approach without damage condition, it can be seen that there 
is no variation in the confidence factor over time. Undesirable structural behaviour is found when the confidence factor is 
lower than the unit, for cases a and b the confidence factor is greater than 1. In contrast, the marine platform presents an 
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undesirable performance level after nine years of its construction for the case that takes into account the variation of 
capacity and demand over time. The confidence factor in the instant of 20 years is equal to 2.85, 1.52 and 0.37 for the 
cases a, b and c, respectively. The above implies a decrease of the confidence factor equal to 87% between without damage 
and when the structural capacity and demand vary over time.  

 

 
a) 

 
b) 

Fig. 6. a) Expected number of failures and b) Confidence factor 
 

4. Conclusions 
A comparative analysis to estimate structural reliability using three different approaches was presented. The structural 

reliability assessment was developed on a fixed offshore structure to define an effective approach to estimate a reliability 
analysis. The crack size in the tubular members due to fatigue was considered as the damage estimation parameter. 
Uncertainties related to environmental conditions (e.g., wind loads, waves and currents) were considered. Structural 
reliability was estimated in terms of the confidence factor and the expected number of failures. In the first phase, the 
damage is omitted to assess structural reliability, which represents a constant confidence factor of 2.85 over time. When 
the structural capacity is reduced over time, the effect of the cumulative damage follows a linear reduction of the 
confidence factor over time. Thus, the confidence factor presents a desirable reliability level with a value equal to 1.52 
after 20 years. Finally, the effect of cumulative damage when it is considering the variation in demand and capacity, leads 
to undesirable reliability levels. 

The useful life of the structure is affected when the cumulative damage is considered; however, due to the high 
importance of offshore fixed structures, it is important to consider all the variants to estimate the structural reliability in 
order to make a decision for design or repair actions, the above is represented by the approach in which the structural 
capacity and demand vary over time.  
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