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Abstract - Petroleum and its products undergo large scale production, transportation, and storage which make them prone to spills and 

leakages into the environment. Petroleum contamination in terrestrial environments, particularly soil bodies, is common and holds major 

consequences on food and crops, microbial communities, the atmosphere, the water sphere, public health and safety, and the soil itself, 

and therefore, requires immediate detection and assessment in case contamination is present. In this paper, advanced machine learning 

methods are used to predict petroleum hydrocarbon contamination in soil using hyperspectral image data. Hyperspectral imaging 

combines imaging and spectroscopy and can detect petroleum hydrocarbons using the characteristic absorption features in hydrocarbon 

reflectance spectra. Laboratory prepared soil samples are contaminated with crude oil and scanned with a hyperspectral camera in a 

laboratory setup. The data collected is used to train deep learning models to predict, quantitatively, the amount of petroleum present in 

soil samples. To make predictions, a first model is built to use spectral data from a single pixel while a second model is built to use 

spectral and spatial data by using two adjacent pixel spectra as input. The results show good performance for both models, with the two-

pixel model achieving a better mean square error of 0.48 on a testing dataset compared to the mean square error of 0.628 for the single 

pixel model on the same testing data. Therefore, hyperspectral imaging contains valid spectral and spatial information that are beneficial 

for assessing petroleum contamination in soil with good accuracy.  
 

Keywords: hyperspectral imaging, oil spills, soil pollution, petroleum hydrocarbons, deep learning, artificial intelligence, 

neural networks 

 

1. Introduction 
Petroleum remains a hugely important resource worldwide, with applications in many industries, mainly transportation, 

and amounts to trillions of barrels being produced annually. However, its large-scale transportation and storage can lead to 

accidents such as spills that can have devastating effects on ecosystems and economies that linger for years [1]. Even on the 

short term, spills are flammable and contain toxic chemicals that are harmful upon exposure. The process of detecting and 

responding to oil spills is critical and must be done quickly and accurately to prevent further damage.  

Petroleum Hydrocarbons (PHCs) are a complex mixture of thousands of different chemicals along a wide range of types, 

properties, and behaviors that are extracted from underground reservoirs as crude oil and taken to refineries to be separated 

into different products based on their uses [2]. Petroleum releases into the environment originate from crude oil or crude oil-

based products such as gasoline and diesel fuel. Furthermore, petroleum spills in marine and terrestrial environments 

eventually make their way to soil bodies or marine sediments [1]. However, the sources of petroleum hydrocarbon 

contamination in soil could also be petrogenic such as industrial emissions, pyrogenic such as burning of fossil fuels, or 

biogenic due to living organisms [3]. In addition, soil petroleum contamination holds major consequences on the soil itself, 

food and crops, microbial communities, the atmosphere, the water sphere, and public health and safety [4].  

Many methods have been developed to measure the levels of petroleum contamination in soil both quantitatively and 

qualitatively such gas chromatography and fluorescence spectroscopy. Most of the common methods suffer in terms of 

portability and analysis time and require sample extraction and preparation which involves the use of hazardous solvents. 

On the other hand, Visible-Near Infrared (Vis-NIR) spectroscopy is proven to be a portable, quick, and non-invasive method 

for hydrocarbon assessment in soil with good accuracy [5]. In the Vis-NIR spectroscopy range (800-2500 nm), hydrocarbon 

spectra originate mainly from combinations or overtones of C-H stretching modes of saturated CH2 and terminal CH3 or 

aromatic C-H functional groups resulting in absorption at 1200, 1725, and 2310 nm [5, 6]. However, spectroscopy alone fails 

to give information on spatial distribution of the spectra obtained which limits its application [7]. On the other hand, 
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hyperspectral imaging combines spectral and spatial features by integrating spectroscopy and imaging in a sensor that 

acquires several dozens or hundreds of images of contiguous wavelengths, assigning every pixel in the hyperspectral 

image its own spectrum over a contiguous wavelength range represented by an array of spectral bands. The resulting 

hyperspectral image is a three-dimensional data cube composed of two spatial dimensions (x rows and y columns) as 

well as one spectral dimension (λ wavelengths). 

 Due to the direct relation between PHCs and their reflectance spectra, the spectra can be used to make predictions 

on the levels of PHC contamination in soil mediums quantitatively and qualitatively by analyzing it [5, 6]. Several 

different methods have been used to analyze spectral data to assess petroleum hydrocarbons in soils. Linear methods for 

spectral data analysis include regression analysis such as linear regression and logistic regression, multivariate 

techniques, Partial Least Squares (PLS) and Principal Component Analysis (PCA) [8-10]. However, factors affecting 

hyperspectral remote sensing such as spectral variability due to varying image conditions and mixed pixel spectra due 

to contributions from different materials introduce complexities that require nonlinear analysis methods [11]. Nonlinear 

methods for spectral data analysis include neural networks and kernel-based transformations [6, 12].  

This paper’s objective is to build predictive models to estimate the amount of petroleum hydrocarbon contaminant 

in contaminated soils using hyperspectral images while making use of spatial and spectral features through deep neural 

networks. The remainder of this paper is structured as follows: a methodology section that describes three main processes 

which are petroleum contamination of soil samples, hyperspectral data collection, and deep learning model training, a 

results section to report and analyse the results, and a conclusions section to discuss the significance of our work.  

 

2. Methodology 
The experimental method begins with preparing samples of PHC contaminated soil. For the PHC, this research uses 

Arabian light crude oil as the PHC of choice being the major export-grade oil in the Arab region and pure Ottawa sand 

(2 to 0.05 mm grain size) as the soil type of choice, mostly representing beach sediment. The hyperspectral camera used 

is the Hyspex SWIR-384 with a 930-2500 nm spectral range, 288 spectral channels. A laboratory setup was constructed 

to operate the camera and scan samples in a controlled environment which shown in Fig. 1. The setup consists of a light 

source to keep the samples under constant illumination using halogen bulbs that emit a constant stream of light within 

the camera’s spectral range, a blackout fabric cover that prevents external light from interfering with the measured 

spectra, and a custom open containment box to place the samples as they are scanned which is painted black to prevent 

light scatter. A Spectralon cube is placed near each sample during a scan which acts as a calibration target to obtain the 

relative reflectance of a sample by dividing the irradiance of the sample by the irradiance of the cube [13].  

 
Fig. 1: Side view of the laboratory setup. 
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Contaminated soil samples were prepared through incremental addition of crude oil to 50 grams of Ottawa sand in a 

petri dish. Initially, the uncontaminated sample was scanned with the camera. An aliquot of 0.5 mL of crude oil was then 

added to the sand, thoroughly mixed to ensure even distribution of the contaminant in the sample and scanned again with the 

camera. The process was repeated with 0.5 mL of crude oil being added each time to the same sand sample until a total of 2 

mL of oil were added. After that, crude oil addition was performed with increments of 1 mL, with sample scanning taking 

place after each increment. This process was repeated until a total volume of 13 mL of crude oil were added to achieve the 

sample saturation. 

As for the deep learning model, two models were trained based on two input types. The first model takes as input the 

spectrum of a single pixel, i.e., the 288 spectral bands of that pixel. The architecture of this model consists of four hidden 

layers with 30 neurons each and an output layer with one neuron corresponding to the predicted volume of oil in the sample. 

All neurons in all layers use the rectified linear activation function. The second model takes as input the spectra of two 

spatially neighbouring pixels that are consecutive in the x-dimension with the same y-dimension from the same hyperspectral 

image. Therefore, this model uses spatial as well as spectral features by taking as input the 288 spectral bands of two pixels 

in a local region which sums up to a total of 576 input values. The architecture of this model consists of four hidden layers 

with 60, 30, 20, and 10 neurons respectively and an output layer with one neuron corresponding to the predicted volume of 

oil in the sample. All neurons in all layers use the rectified linear activation function as well.  

To train the models, pixel reflectance spectral data from the hyperspectral image of each increment were used. Only 

pixels inside the region of the petri dishes, i.e., sample pixels, were considered. To obtain the training dataset of the single-

pixel model, the spectral bands of each pixel inside the sample were extracted, converted to reflectance, and assigned a label 

equal to the ground truth total volume of oil added to the sample when the scan was done. The dataset was split into 75% of 

pixels for training and 25% for validation. A testing set was formed by preparing new samples using the same pure sand and 

crude oil and contaminating 50 grams of sand at four random contamination levels, namely 0.2, 2.5, 7.5, and 10.5 mL of 

crude oil in each sample. The reflectance spectral bands of the pixels from the test samples scans and their labels, i.e., the 

ground truth volume of oil in the sample were used to form the testing dataset. Using the same data, the datasets of the second 

model were formed by extracting the reflectance spectral bands of every possible combination of two x-dimension 

consecutive pixels inside the same sample and assigning them a label equal to the ground truth volume of oil in the sample. 

 

3. Results 
The average spectra of each incremental sample, i.e., each oil contamination level, is plotted in Fig. 2 along with their 

standard deviations. Fig. 2 also shows the hyperspectral image cube that was taken of the sand sample before any petroleum 

contaminant was added. In the graph of Fig. 2, the x-axis corresponds to the wavelengths and the y-axis corresponds to the 

relative reflectance values limited between 0 for no light reflectance and 1 for maximum light reflectance at a given 

wavelength. The average reflectance spectrum shifts towards less light reflectance the more oil is added to the sample as 

shown in Fig. 2; i.e., the more oil volume in a sample, the lower the reflectance spectrum is in the plot. The PHC absorption 

feature dips for the samples with oil are visible at the 1725 and 2310 nm wavelengths with the help of the black vertical lines 

in the graph of Fig. 2. Moreover, the standard deviations in Fig. 2 indicate little intersection between the reflectance spectra 

of different contamination levels which allows us to assume that each contamination level has a unique range of reflectance 

spectra associated with it.  

 



 

 

 

 

 

 

 

ICEPTP 192-4 

 
Fig. 2: Average reflectance spectra of the Arabian light oil and pure sand samples at different contamination levels to the left and an 

example hyperspectral image of the soil sample with 0 ml of contaminant to the right 

 

 To better visualize the absorption features, a normalization method called continuum removal is used which essentially 

transforms spectra to a common baseline for comparison [9]. Continuum removal is performed on the average reflectance 

spectra of each sample around the 1725 nm feature wavelength and is shown in Fig. 3. The depth and width of the absorption 

feature is directly proportional to the volume of oil in the sample, i.e., the deeper and wider the dip in the absorption feature, 

the higher the amount of oil in the sample. Therefore, we can assume that correlations between the reflectance spectra and 

the level of crude oil contamination in a sand sample exist and can be learned using a machine learning model.   

 

 
Fig. 3: Continuum removed reflectance spectra of the contaminated sand samples between 1650 and 1850 nm  
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 From the training datasets formed, the deep learning models were constructed and trained for each model individually. 

The Mean Square Error (MSE) is a common metric used for regression problems in machine learning that uses the average 

squared difference between observed and predicted values over all instances in a dataset. The MSE was calculated using 

predictions from each model on the training, validation, and testing datasets and is shown in Table 1.  

 
Table 1: Mean square errors of the two models on the datasets. 

Model Training error Validation error Testing error 

Single-pixel model 0.093 0.119 0.628 

Two-pixel model 0.101 0.128 0.48 

 

The results of both the single-pixel and two-pixel models show good performance on the collected data. Low training 

and validation errors indicate that the models fit the training data well. The two-pixel model has slightly higher training and 

validation errors than the single-pixel model since it is easier to fit the single-pixel model to its data as it must adjust to less 

input values, 288 input bands, compared to the two-pixel model with 576 input bands. For both the single-pixel and two-

pixel model, the largest errors are on the testing datasets. The reason is that the test data was created from unseen samples 

that had been contaminated separately to determine the ability of the models to generalize on new samples and scans. 

Therefore, it is expected to find a drop in performance while moving from training and validation data that are used to build 

and fit the model, to the testing data that is used to test the model’s performance. Nonetheless, the testing data errors indicate 

good model performance, which can be improved further with more tuning of model hyperparameters. The results also 

indicate the benefit of adding spatial data along with the spectral one as input. Using spectral input from two locally adjacent 

pixels in a neighbouring region resulted in a two-pixel model that performs significantly better than its single-pixel 

counterpart on the testing data with 24% improvement in performance with respect to mean square error. 

 

4. Conclusions 
This study demonstrates the ability of hyperspectral data and deep learning techniques to accurately predict levels of 

petroleum contamination. Predictions of the single-pixel and two-pixel model on an independent testing dataset showed good 

performance and potential. A 24% performance increase was obtained with the two-pixel model over the single-pixel model. 

This highlights the importance of spatial data in hyperspectral imaging for making better predictions on PHC levels in soil. 

This method holds potential in aiding emergency response procedures by monitoring and detecting petroleum spills and 

contaminations in a quick and practical manner before further testing with analytical and laboratory techniques can be done. 

For the future, we aim to continue this research by creating samples from various other soil types and petroleum hydrocarbons 

to create more diverse data for model training. We also intend to explore further the effects of spatial data by training more 

sophisticated spectral-spatial models with different types of input from hyperspectral image data. 
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