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Abstract – Cracking in reinforced concrete (RC) slabs and beams subjected to flexural moments reduces their flexural stiffness 

significantly. At service load conditions, deflections are typically calculated using the effective moment of inertia (𝐼𝑒), which is calculated 

based on the gross moment of inertia (𝐼𝑔) and the cracked moment of inertia (𝐼𝑐𝑟).  The latter is based on the transformed properties of 

the cross-section and requires the calculation of the depth of the compression zone  (𝑘𝑑) then the calculation of the moment of inertia.  

This paper shows that (𝐼𝑐𝑟) depends solely on the modular reinforcement ratio (𝜌 𝑛) where (𝜌) is the reinforcement ratio and (𝑛) is the 

modular ratio of the reinforcement relative to the concrete. It has been proposed in a previous study that (𝜌 𝑛) ranges from 0.005 to 0.16.  

This range covers the properties of beams and slabs with concrete compressive strength (𝑓𝑐
′) ranging from 20 to 60 MPa and with 

reinforcement ratio ranging from minimum to maximum values allowed by the ACI 318 building code.  It also covers a wide range of 

beams and slabs reinforced with FRP bars.  Within such a range of (𝜌 𝑛), it will be shown that (𝐼𝑐𝑟) can be calculated directly using 
(𝐼𝑐𝑟 = 0.36 (𝜌 𝑛)0.81 𝑏 𝑑3), where (𝑏) and (𝑑) are the width and effective depth of the cross-section respectively.  The error between the 

exact and the approximate equation is limited.  Based on this approximate equation, it is shown that the flexural stiffness of fully cracked 

elements depends on the ratio and the modulus of elasticity of the reinforcement raised to the power 0.8 and to (𝑑) raised to the power 

2.2. In addition, it is shown that the effect of (𝑓𝑐
′) on the flexural stiffness is limited.  
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1. Introduction 
Before flexural cracking, deflections in RC beams and slabs can be calculated based on the uncracked stiffness of the 

cross-sections.  The effect of the reinforcement is typically neglected, and the flexural stiffness can hence be taken as (𝐸𝑐  𝐼𝑔), 

where (𝐸𝑐) is the modulus of elasticity of concrete in compression [1].  Figure 1 shows a singly reinforced rectangular cross-

section.  The gross moment of inertia can is calculated as (𝐼𝑔 = 𝑏 ℎ3/12) where (ℎ) is the full height of the cross-section. 
After cracking, the flexural stiffness drops significantly.  Building codes such as the ACI-318 building code [1] allows 

the use of the effective stiffness (𝐼𝑒) using the following equations: 
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In Eq. (1), the term (𝑀𝑎) is the maximum applied bending moment in the member and (𝑀𝑐𝑟) is the flexural cracking 

moment.   

Figure 1 shows the cracked cross section after transforming it to an equivalent concrete cross-section using the stiffness 

modular ratio (𝑛) given by (𝐸𝑟 𝐸𝑐⁄ ).  The term (𝐸𝑟) is the modulus of elasticity of the reinforcing bars. The modulus of 

elasticity of the concrete can be calculated as [1]: 

 

𝐸𝑐 = 4700√𝑓𝑐
′       in MPa (2) 
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Fig. 1: Gross and cracked cross-sections of singly reinforced flexural element. 

 

In Figure 1, the depth of the compression zone is (𝑘𝑑) where (𝑘) is a unitless fraction smaller than unity. The term 
(𝑘) can be calculated as: 

 

𝑘 = √2(𝜌 𝑛) + (𝜌 𝑛)2 − (𝜌 𝑛) (3) 

 

The cracked moment of inertia is calculated as: 

 

𝐼𝑐𝑟 =  𝑏 (𝑘𝑑)3

3
⁄ + 𝑛 𝐴𝑟(𝑑 − 𝑘𝑑)2 (4) 

 

where the term (𝐴𝑟) is the area of reinforcement in the tension zone.  See Fig. 1.  Replacing the term (𝐴𝑟) in Eq. (4) with 
(𝜌 × 𝑏 × 𝑑) and the term (𝑘) with the right-hand side of Eq. (3) and re-arranging gives: 
 

𝐼𝑐𝑟 = [
1

3
(√2(𝜌𝑛) + (𝜌𝑛)2 − (𝜌 𝑛))

3

+ (𝜌𝑛) (1 − (√2(𝜌𝑛) + (𝜌𝑛)2 − (𝜌𝑛)))

2

] 𝑏𝑑3 (5) 

 

Equation (5) can be re-written as: 

 

𝐼𝑐𝑟 = [𝜂]  𝑏𝑑3 (6) 

 

where the term (𝜂) is given by: 

 

𝜂 =
1

3
(√2(𝜌𝑛) + (𝜌𝑛)2 − (𝜌 𝑛))

3

+ (𝜌𝑛) (1 − (√2(𝜌𝑛) + (𝜌𝑛)2 − (𝜌𝑛)))

2

 (7) 

 

Eq. (7) shows that the term (𝜂) can be solely calculated using the term (𝜌 × 𝑛) without the need to calculate the term 
(𝑘).  Figure 2 plots the relationship between (𝜂) and (𝜌 × 𝑛). 
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Fig. 2: Plot of (𝜂) versus (𝜌 × 𝑛). 

 

This paper shows that it is possible to develop a simple and direct relation between (𝜂) and  (𝜌 × 𝑛) if a practical range 

of the latter term is obtained.  However, this is possible if the range of values of (𝜌 × 𝑛) is specified and selected based on 

practical design considerations.  
 

2. Selected range of (𝜌 × 𝑛) 
The ACI 318 code [1] requires that steel-reinforced flexural members are designed to be tension-controlled.  This is 

achieved by ensuring that at ultimate conditions, the largest strain in the tensile reinforcement exceeds the yield strain (𝜀𝑦) 

of this steel by at least 0.003.  The code also requires that the amount reinforcement is not smaller than a certain minimum. 

The equations for minimum reinforcement are different for slabs and for beams. 

For RC members with concrete compressive strength (𝑓𝑐
′) ranging from 20 to 60 MPa and reinforcing steel of yield 

strength equal to 420 MPa or 550 MPa, it is possible to prove that reinforcement between the minimum to the maximum 

levels leads to (𝜌 × 𝑛) ranging from 0.084 to 0.161 [2]. 
For FRP-reinforced members, the properties of the FRP bars vary considerably depending on the type of fiber in the 

bars and even with bars of similar type of fibers.  To obtain guidance to a practical range of modular reinforcement ratio 
(𝜌 × 𝑛), the author developed a database of test results from beams and slabs reinforced with FRP bars from the literature 

[2].  The data was collected from thirty studies that were published between 1995 and 2019.  Data from 233 beams and slabs 

longitudinally reinforced with FRP bars was available.  he modular reinforcement ratio (𝜌 × 𝑛) ranged from 0.0047 to 0.116, 

with an average of 0.0215. 

Based on the above it is proposed that practical values of (𝜌 × 𝑛) range from 0.005 to 0.16.  It is to be noted that this 

range is suitable for steel-reinforced members with (𝑓𝑐
′) larger than 60 MPa, except that it is suitable within a partial rather 

than the full range of reinforcement levels (from minimum to maximum 𝜌). 

 

3. Proposed Equation for (𝜂) 
This section presents the proposed equation and highlights how it can be used to assess the effects of different parameters 

on the moment of inertia of cracked transformed cross-sections reinforced with steel or with FRP bars. 
 

3.1. Proposed Equation 
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It is proposed that for the range of (0.005 ≤ 𝜌 × 𝑛 ≤ 0.16), it is possible to calculate (𝜂) directly from the following 

equation: 
 

𝜂 = 0.36 (𝜌 × 𝑛)0.81 (8) 

 

and consequently, the term (𝐼𝑐𝑟) using the following equation: 

 

𝐼𝑐𝑟 =  0.36 (𝜌 × 𝑛)0.81   𝑏𝑑3 (9) 

 

The use of Eq. (9) avoids the need to calculate (𝑘) using Eq. (3) then (𝐼𝑐𝑟) using Eq. (4).  It also provides a direct 

relation between (𝐼𝑐𝑟) and (𝜌 × 𝑛). 

 
Fig. 3: Comparison between results of exact and proposed equations of (𝜂). 

 

Fig. 3 compares the exact values of (𝜂) calculated using Eq. (7) to the approximate ones calculated using the 

proposed Eq. (8).  If the selected range is split into fifty equidistant points and the ratio of the exact to the calculated 

values of (𝜂) are calculated, the average of the ratios is 1.01 and the coefficient of variation is 3.2%.  The ratios range 

from 0.89 to 1.04.  For the 233 members in the database, the ratio of exact to approximate (𝜂) ranged from 0.88 to 1.04.  

The average of the 233 ratios was 1.00 and the coefficient of variation was 3.9%. 

 
   3.2. Application 

Building codes such as the ACI 318 code [1] allows the deflections of steel-reinforced flexural members to be 

calculated based on the effective moment of inertia (𝐼𝑒) such as the one given in Eq. (1-b).  The ACI draft code for the 

design of flexural members reinforced with glass FRP (GFRP) bars [3] allow a similar approach.  The value of (𝐼𝑒) 

ranges from an upper limit equal to (𝐼𝑔) to a lower limit equal to (𝐼𝑐𝑟). In practical applications, the value of (𝐼𝑒) 

approaches the lower limit and designers conservatively assume the lower limit of (𝐼𝑐𝑟) in their preliminary calculations.  

On the other hand, the Canadian standard for the design and construction of building components with FRP [4] assumes 

that the moment of inertia in cracked regions of FRP-reinforced members is equal to (𝐼𝑐𝑟). 

The maximum deflection (𝛥) in a simply supported flexural member of span (ℓ) subjected to a uniformly distributed 

load of magnitude (𝑤) is calculated using the following equation: 
 

𝛥 =
5

384
 

𝑤 ℓ4

(𝐸𝑐𝐼𝑒) 
 (9) 
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The maximum deflection is inversely proportional to the flexural stiffness (𝐸𝑐  𝐼𝑒).  In continuous beams, the maximum 

maximum deflection is also inversely proportional to (𝐸𝑐  𝐼𝑒).  If (𝐸𝑐  𝐼𝑒) is conservatively taken as (𝐸𝑐  𝐼𝑐𝑟), it is of interest to 

to expand this flexural stiffness as follows: 

 

𝐸𝑐  𝐼𝑐𝑟 ≈ 𝐸𝑐  × 0.36 (𝜌 𝑛)0.8  𝑏 𝑑3 (10) 

 

The power of the modular ratio in Eq. (10) is changed from 0.81 to 0.8 for simplicity. If the reinforcement ratio is 

replaced with (𝐴𝑟/𝑏/𝑑) and the modular ratio (𝑛) is replaced with the ratio of the materials moduli (𝐸𝑟  / 𝐸𝑐) and the equation 

is re-arranged, the following is obtained: 

 

𝐸𝑐  𝐼𝑐𝑟 ≈ 0.36 × 𝐸𝑐
0.2 × (𝐴𝑟  × 𝐸𝑟)0.8  × 𝑏0.2 × 𝑑2.2 (11) 

 

Eq. (11) shows that the factor which has the largest effect on the flexural stiffness of well-cracked elements is the 

effective depth (𝑑) followed by the area and the modulus of elasticity of the reinforcing bars.  It is of interest to note that the 

flexural stiffness is proportional to (𝑑) raised to the power 2.2 and not 3 as would be expected.  It is also proportional to 
(𝐴𝑟 𝐸𝑟) raised to the power 0.8.  This gives a direct assessment of the effect of the lower modulus of elasticity of FRP bars 

relative to steel bars on the stiffness and deflections of beams and slabs.  Eq. (11) also shows that the modulus of elasticity 

of the concrete has a limited effect on the flexural stiffness.  With the modulus of elasticity of concrete being proportional to 

the square root of (𝑓𝑐
′) as shown in Eq. (2), it is shown that the flexural stiffness is proportional to (𝑓𝑐

′)0.1.  This shows that 

the compressive strength of concrete has a negligible effect on the maximum deflections of well cracked flexural members. 

 

4. Conclusion 
This paper has shown that for rectangular concrete sections reinforced with steel of FRP bars, it is possible to calculate 

the cracked transformed moment of inertia (𝐼𝑐𝑟) directly from the modular reinforcement ratio (𝜌 × 𝑛).  The proposed 

equation 𝐼𝑐𝑟 =  0.36 (𝜌 × 𝑛)0.81   𝑏𝑑3 was shown to give relative accurate results for values of (𝜌 × 𝑛) ranging from 0.005 

to 0.16.  These values cover a wide range of possible design values in practice.   

The paper also showed that the flexural cracked stiffness is proportional to the effective depth of the cross section raised 

to the power 2.2 and the area and modulus of elasticity of the reinforcement, both raised to the power 0.8.  The effect of the 

compressive strength on the flexural stiffness is shown to be negligible. 
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