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Abstract - In recent years, climate change has led to an increased frequency and scale of heavy rainfall events, and subsequently, a rise 

in the occurrence of landslide induced by these rainfall events has been observed. Vegetation enhances slope stability by increasing soil 

strength through root systems. It is essential to quantitatively assess the influences that vegetation exerts on the occurrence of landslides 

and their depth to utilize vegetation to reduce disaster risk. Hence, in this study, we aimed to quantitatively evaluate the effects of 

vegetation diversity on the depth of landslides in the Aso region of Kumamoto Prefecture using statistical methods. We collected 

necessary data on topography, geology, vegetation, and rainfall and analysed them using a random forest. As a result of constructing the 

RF, the factors importance was the slope angle was the largest, followed by the landslide area, and the importance of vegetation was not 

large. As a result of creating partial dependence plots of the average landslide depth for each geology and vegetation type, the average 

landslide depth of secondary grasslands was approximately 20 cm smaller than that of broadleaf forests in all geological categories. This 

study could contribute substantially to future disaster mitigation efforts. 
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1. Introduction 
In recent years, climate change has led to an increased frequency and scale of heavy rainfall events, and subsequently, 

a rise in the occurrence of landslides induced by these rainfall events has been observed. Landslides are triggered by various 

factors, including topography, geology, and vegetation [1]. Among these factors, vegetation has been reported to have a 

significant influence on the occurrence of landslides [2]. Vegetation enhances slope stability by increasing soil strength 

through root systems. [3][4]. The concept of utilising functions provided by ecosystems, such as vegetation, for disaster 

prevention and mitigation is known as ecosystem-based disaster risk reduction (Eco-DRR). The introduction of this approach 

has been under discussion in recent years [5]. It is essential to quantitatively assess the influences that vegetation exerts on the 

occurrence of landslides and their depth to utilize vegetation to reduce disaster risk. However, to the best of our knowledge, no 

study has quantitatively evaluated the impact of vegetation on the depth of landslides, considering factors such as topography, 

geology, and rainfall. Hence, in this study, we aimed to quantitatively assess the impact of differences in vegetation on the 

depth of landslides in the Aso region of Kumamoto Prefecture using statistical methods. 

 

2. Study Area 
The Aso region is located in the Kumamoto Prefecture, in Japan (Fig. 1). The total study area was approximately 376 

km², with maximum and minimum elevations of 1591 m and 232 m, respectively. The Aso volcano, located almost in the 

centre of the study area, is situated roughly in the middle of Kyushu and possesses a caldera measuring approximately 25 

km from north to south and 18 km from east to west. This caldera is one of the largest in the world and attracting many 

tourists each year. Extensive grasslands exist near the caldera, and numerous valuable flora and fauna that depend on these 

grasslands inhabit this area. The disaster targeted in this study was heavy rain disaster that occurred in the northern part of 

Kyushu in 2012. 
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During this heavy rain disaster in northern Kyushu from July 11 to 14, 2012, heavy rainfall exceeding 100 mm /h 

and 800 mm /24 h was observed mainly in Kumamoto, Oita, and Fukuoka Prefectures (Fig. 2). This resulted in flooding 

and landslide disasters at various locations.  

 

 
Fig. 1: Location of the study area 
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Fig. 2: Hourly rainfall and cumulative rainfall from July 11 to 12, 2012, at the Aso Otohime Observatory, Kumamoto Prefecture, 

Japan 
 

3. Materials and Methods 
3.1 Extraction of Landslide Sites 

To identify landslide sites, we utilised the "Distribution Map of Sediment Movement Associated with the Heavy Rain 

in Northern Kyushu in July 2012" [6]. We conducted our analysis using on the method proposed by Asada et al. [7]. The 

identified landslide sites include bank erosion-type failures, where the foot of a hillside loses support and collapses. Therefore, 

we created first-order catchment areas according to the method by Asada et al. and targeted the landslide sites located within 

these catchment areas. A total of 1855 landslide sites were identified for the study (Fig. 3). 

 
Fig. 3: Distribution of the target landslide areas 

 
3.2 Data Collection 

We collected data on factors considered to influence the occurrence of landslides, including elevation [8], slope [9], 

aspect [10], stream power index (SPI) [11] [12], topographic wetness index (TWI) [11] [12], surface geology [13], vegetation 

[14], and short-duration rainfall [15]. Elevation, slope, aspect, relief, SPI, and TWI were generated using pre-disaster laser 

profiler data for the digital elevation model. The surface geology was created by referencing the Aso Volcano Geological 

Map from the National Institute of Advanced Industrial Science and Technology [16]. The vegetation data was obtained 
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from the Natural Environment Conservation Basic GIS data published by the Nature Conservation Bureau of the 

Ministry of the Environment [17]. The maximum hourly rainfall was derived from the 1km mesh analysis rainfall data 

provided by the Japan Meteorological Agency [18]. 

 
3.3 Statistical Analysis 

Although Pearson's correlation coefficient was used for multicollinearity, the variance inflation factor (VIF) could 

be used to observe one-to-many correlations; therefore, it was adopted as an indicator to confirm multicollinearity in 

this analysis. The VIF was calculated using the following formula. 

𝑉𝐼𝐹 = 1/(1 − 𝑅′2) (1) 

R' denotes the multiple correlation coefficient. Multicollinearity may be present when the VIF is ≧ 5 [19]. Therefore, in 

this study, the VIF threshold was set to 5. If a value exceeded this threshold, the corresponding factor was excluded, and the 

VIF calculation was repeated until all VIFs were below 5. 

The random forest (RF) was adopted as a statistical analysis method to evaluate the impact of factors including vegetation 

on the landslide depth. Random forest (RF) is a type of ensemble learning that levels out overfitting of decision trees by 

constructing a large number of decision trees and taking a majority vote on the results of each decision tree [20]. The 

explanatory variables were elevation, slope, direction, SPI, TWI, surface geology, vegetation, and maximum hourly rainfall. 

The response variable was the average failure depth at the slope failure site. Variable importance was calculated based on 

MSE (IncMSE). IncMSE is calculated as an index of how much the mean squared error increases when making predictions 

excluding the relevant explanatory variable. In order to quantitatively evaluate the influence of vegetation on the average 

collapse depth, partial dependency plots were created for each vegetation item. A partial dependence plot is a method for 

visualizing the relationship between an explanatory variable and a response variable when other explanatory variables are 

constant (average values). All analyses were performed using R -version 4.3.1. 

 

4. Results 
As a result of constructing the RF, the factors importance was the slope angle was the largest, followed by the 

landslide area, and the importance of vegetation was not large. As a result of creating partial dependence plots of the 

average landslide depth for each geology and vegetation type, the average landslide depth of secondary grasslands was 

approximately 20 cm smaller than that of broadleaf forests in all geological categories. In addition, using partial 

dependence plots, we showed the relationship between slope angle and average landslide depth for each vegetation, and 

the relationship between hourly rainfall and average landslide depth. For the slope angle up to 50 degrees, the average 

landslide depth of secondary grasslands is approximately 25 cm smaller than that of broadleaf forests. However, when 

the slope angle exceeded 50 degrees, the average collapse depth of secondary grasslands was similar to that of broad-

leaf and coniferous forests. When the maximum hourly rainfall is less than 80 mm, the average landslide depth of 

secondary grasslands is about 30 cm smaller than that of broad-leaved forests. However, when the maximum hourly 

rainfall exceeded 120 mm, the average landslide depth of secondary grasslands was similar to that of broadleaf and 

coniferous forests. 

 

5. Discussion 
Statistical analysis revealed that secondary grasslands have smaller collapse depths than coniferous forests and 

broadleaf forests. Previous studies have also reported that grasslands have smaller landslide depths and sediment yield 

compared to forests [14]; the current study supports these findings. Moreover, while previous studies did not consider 

factors such as topography, geology, and rainfall during analysis, the present study quantitatively showed that secondary 

grasslands reduce the depth of collapse even when these factors are considered. 

The smaller average landslide depth in secondary grasslands compared with that in coniferous forests and broadleaf 

forests can be attributed to differences in root distribution and volume. The root systems of herbaceous plants are 

generally distributed closer to the surface than those of woody plants [21] and do not penetrate deeply. Therefore, when 

landslides occur, much of the soil is not bound, and only the landslides. Thus, the landslide depth is also expected to be 



 

 

 

 

 

 

 

ICEPTP 107-5 

small. Soil thickness is another factor. Forest soil is thicker than grassland soil owing the accumulation of litter and other 

materials [22].  

In this analysis, we could not obtain spatial data on soil thickness and, therefore, did not incorporate it into the model. 

model. However, future discussions on the influence of vegetation differences on landslide depth should consider soil 

thickness. 

 

6. Conclusion 
To gain insight into the impact of vegetation differences on landslide depth, we constructed and analysed a RF targeting 

landslides that occurred in the Aso region due to the July 2012 heavy rain in northern Kyushu. As a result of constructing 

the RF, the factors importance was the slope angle was the largest, followed by the landslide area, and the importance of 

vegetation was not large. As a result of creating partial dependence plots of the average landslide depth for each geology and 

vegetation type, the average landslide depth of secondary grasslands was approximately 20 cm smaller than that of broadleaf 

forests in all geological categories.This study could contribute substantially to future disaster mitigation efforts.  
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