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Abstract - Air pollution exposure not only leads to respiratory and cardiovascular diseases, but is also detrimental to cognitive abilities, 

mental health, and prenatal development. Thus, cities worldwide have invested in sophisticated air pollution monitoring systems to assess 

and reduce air pollution and its consequences. When excessive build-up of air contaminants occurs, emergency measures must be enacted 

to reduce human exposure and decrease pollution levels. Predicting such situations a few hours in advance is critical to prevent human 

health from being compromised. While usage of deep neural networks has become very popular, standard machine learning approaches 

remain very attractive: they deliver competitive performance, they do not rely on specialised equipment, and their energy consumption 

is sustainable. Experiments conducted on London air quality data demonstrate that Linear Regression achieves state-of-the-art 

performance, with 1-hour and 24-hour predictions displaying, respectively, 0.2 and 3.2 mean absolute errors. Moreover, its power usage 

is a fraction of what is required by its deep learning competitor for both training and predicting, i.e., 1/2840th and 1/126th, respectively. 

This is significant as they demonstrate air pollution prediction can be sustainable and accurate without prohibitive hardware investments. 
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1. Introduction 
In 1952, the Great Smog of London killed over 10,000 people in 5 days [1]. It led to the first legislation aimed at 

controlling dangerous emissions in 1956 [2]. Although air quality is now meticulously monitored in the city, 3,600 to 4,100 

deaths were attributed to air pollution in 2019 [3]. This situation led Public Health England to categorise human-made air 

pollution as the most significant environmental risk to public health in the UK. The two most dangerous pollutants are 

nitrogen dioxide (NO2) and fine particulate matter with a diameter of 2.5 μm or less (PM2.5). London authorities put in place 

an Ultra Low Emission Zone (ULEZ) to reduce air pollution. Since internal combustion engines are the main sources of 

NO2, its emissions between 2019 and 2022 were reduced by 23%. Unfortunately, PM2.5 emissions only decreased by 7% 

[4]. Indeed, they are much more difficult to both control and predict as only 30% are due to road traffic: over 50% come 

from regional/international sources and 17% from households burning wood and coal for heating.  

Forecasting air pollution proves invaluable in providing information about pollution levels, enabling policymakers to 

implement measures to mitigate its impact. Thus, many studies have developed air quality forecasting models [5], based on 

statistical, deterministic, physical, and machine learning (ML) approaches [6]. Methods relying on probability and statistics 

tend to be intricate and less effective than ML-based models which have demonstrated more reliability and consistency. 

Among them, Support Vector Regression (SVR) has performed well in predicting pollutants and particulate levels. [6] and 

[7] respectively. Random Forest (RF) and XGBoost have also proved efficient and able to handle multimodal data such as 

street map and weather data [8]. Recently, deep learning (DL) approaches have been particularly popular. They include 

hybrid models such as Convolutional Neural Network- Recurrent Neural Network  (RNN), Attention-RNN, and RNN-LSTM 

(Long Short-Term Memory) [9] and [10]. Since efforts have been focused on predicting air pollution in highly polluted 

megapoles, such research has been limited in the UK, even in London. Still, in a study comparing 12 ML methods forecasting 

PM2.5 in London,  Linear Regression (LR) proved the best standard ML method, but was outperformed by a DL method, i.e., 

LSTM [11]. On the other hand, similar predictions for Nottingham, reached a different conclusion with LR and SVR 

achieving better performance than LSTM and Bi-LSTM [12]. 

While model performance is crucial when choosing a ML approach, its energy and carbon footprints should also be 

considered. Indeed, the ML community has started reflecting on the balance between performance gains and environmental 

impact  as per [13] and [14] respectively. This issue has particularly been exacerbated with the arrival of large language 

models, each being responsible for hundreds of tonnes of CO2 equivalent [15]. Moreover, as the trend during the DL era has 

been to see computational requirements double every 2 months [16] and [17], DL may soon emerge as a counterforce in the 
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battle against climate change [17]. In addition, the cost of specialised hardware, which is required for DL, can be a barrier to 

entry for individuals and organisations creating inequality within and between communities. This is particularly distressing 

as air pollution already reinforces socio-economic inequalities [18]. As DL models require more computing power than 

traditional ML models, and recent studies suggest that, for air pollutant prediction, the performance gain of using DL may 

be minimal [11] or nonexistent [12], this study will focus on standard ML models using LSTM as a DL reference to identify 

which is both effective for various prediction horizons and sustainable in term of energy consumption. 

 

2. Methods 
The data used in this study consists of hourly PM2.5 measurements (in µgm-3) from the Eltham monitoring station in the 

Royal Borough of Greenwich, London. They were extracted from a wider dataset consisting of values from seven different 

stations over 120 days, from 1st January to 1st May 2019 [19]. After following the data preprocessing approach reported in 

[11], the data were restructured into a sliding window format (Fig. 1(b)) before being used for predictions (Fig. 1(a)). 

 

Fig. 1: Flowchart showing methodology (a) and sliding window method (b), where t is the current time, n is the size of the sliding 

window, and m is the prediction horizon length. For example, when using a sliding window of 3 hours to predict the value in 1 hour’s 

time, n and m would be equal to 3 and 1 respectively. Thus, prediction of the value at t + 1 would rely on values at t, t – 1, and t – 2.   

This study evaluates traditional ML approaches, (i.e., linear regression, RF regression, and XGBoost), and LSTM for 

forecasting hourly PM2.5 concentration in Eltham. It goes further than [11] and their next hour predictions as it investigates 

predictions for longer horizons from 3 to 24 hours. As the size in hours of the sliding window is an important factor in 

determining the results from a given model, values from 3 to 24 hours were investigated. Moreover, the hyperparameters for 

RF regression, XGBoost and LSTM are optimised using a grid search. As per the standards in the field, the root mean squared 

(RMSE) and mean absolute errors (MAE) are used to evaluate the models.  

Since this work aimed to identify an air quality forecasting method that provides the best performance while using as 

little energy as possible, the energy usage of both training and prediction processes for each model was calculated. As the 

CodeCarbon package is well-documented [20], it was chosen to estimate energy consumption in kilowatt-hours (kWh). 

          

3. Results 
Table 1: Comparative results for 1 hour prediction of traditional machine learning methods and those reported in [11]. Power ratio is 

defined by the energy consumption of a model during training or predicting divided by that of the best performing LSTM solution. 
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In terms of performance, i.e., MAE and RMSE, experiments show that, among the accessed methods for 1 hour 

predictions, Linear Regression (LR) outperforms the others and LSTM, the best method reported by [11]. One should note 

they used a much shorter sliding window, i.e., 3 hours. Although a 24-hour window was expected to capture potential daily 

patterns, 19-hour proved optimal. This shorter window may have helped to prevent overfitting. Concerning energy needs, 

the DL approach is the worst, consuming 2840 and 126 times more energy than LR for training and predicting, resp. (see 

Table 1 and Figure 2). Whereas the other models are not as greedy, they are still less sustainable than LR. 

Table 2: Predictions using linear regression, with a 19-hour sliding window, for a variety of prediction horizon lengths. 

 
Fig. 2: Comparison of energy consumption - both training and predicting - for each approach using best performing parameters. 

Among all methods, linear regression also performs best for longer prediction horizons (data not shown). Moreover, 

Table 2 reveals that for this model, MAE and RMSE increase linearly with the length of the prediction horizon. These MAE 

values can be compared to the widths of PM2.5 bands used by the UK government to inform public health advice. The 

narrowest of these bands is 4 µgm-3, suggesting that predictions up to 24 hours may support decision making.  

 

4. Conclusion 
Despite the adoption of deep learning solutions in many application areas, this study suggests that linear regression is 

particularly appropriate to predict air pollution levels. Not only does this approach outperform its competitors in terms of 

MAE and RMSE, but also it consumes the least energy by a significant margin for both training and predicting. In addition, 

its predictions for a horizon of up to 24 hours are expected to support decision making to reduce particularly harmful human 

Model Hyperparameters Sliding 

window size 

MAE RMSE Power ratio 

(training) 

Power ratio 

(predicting) 

Linear regression N/A 3 hours 0.239 0.579 1941 88 

N/A 12 hours 0.239 0.581 2951 27 

N/A 19 hours 0.235 0.574 2840 126 

N/A 24 hours 0.237 0.577 1268 31 

Random forest 

 

estimators: 40, max_depth: 7 3 hours 0.316 0.583 137 49 

estimators: 45, max_depth: 6 12 hours 0.332 0.603 67 47 

estimators: 20, max_depth:6 24 hours 0.35 0.612 2 2 

XGBoost 

 

estimators: 100, max_depth: 4, learning rate: 0.1 3 hours 0.327 0.602 278 13 

estimators: 100, max_depth: 2, learning rate: 0.1 12 hours 0.361 0.623 358 15 

estimators: 95, max_depth: 2, learning rate: 0.1 24 hours 0.372 0.630 79 28 

LSTM 

(optimizer: adam, 

loss: ‘mae’) 

units: 39, learning rate: 0.001, batch size: 24 3 hours 0.487 0.821 1.9 0.2 

units: 42, learning rate: 0.001, batch size: 24 12 hours 0.423 0.684 0.9 0.8 

units: 42, learning rate: 0.001, batch size: 24 19 hours 0.398 0.649 1 1 

units: 45, learning rate: 0.001, batch size: 24 24 hours 0.439 0.710 1.4 0.9 

Linear regression [11] N/A 3 hours 0.333 0.579 / / 

Random forest [11] Not specified 3 hours 0.331 0.591 / / 

XGBoost [11] Not specified 3 hours 0.345 0.617 / / 

LSTM [11] Not specified 3 hours 0.292 0.574 / / 

Prediction Horizon MAE RMSE 

T + 1 0.235 0.574 

T + 3 0.788 1.322 

T + 6 1.292 1.997 

T + 9 1.584 2.432 

T + 12 2.120 3.228 

T + 15 2.376 3.613 

T + 18 2.673 4.111 

T + 21 2.923 4.529 

T + 24 3.219 4.981 
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exposure. Although further investigations should be undertaken, this study supports the aspirations that AI-based solutions 

are sustainable, affordable, and effective, and that their energy needs must be considered during development.  
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