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Abstract - To address the adverse effects of climate change on road surfaces, the creation of a thermal digital twin for asphalt pavements 
is proposed in this paper. The global increase in temperatures, coupled with heavy traffic loads, has resulted in the premature deterioration 
of asphalt roads. In response to these early failures, recent efforts have focused on enhancing pavement structural integrity by 
incorporating asphalt modifiers and cool pavement strategies. Regardless of the chosen approach, continuous monitoring of pavement 
characteristics using embedded sensors plays a crucial role in enabling timely maintenance and rehabilitation (M&R) decisions. One of 
the ways to achieve this is through the estimation of the thermal diffusivity of the pavement layers which can be directly related to 
structural condition. To estimate the diffusivity, an inverse-Physics-informed Neural Network model is proposed, which facilitates the 
integration of sensor data and the heat transfer mechanisms within the pavement. A finite-difference numerical model is adopted to serve 
as the groundtruth model, to provide the temperature data within the pavement layer, given the boundary conditions. Using the weather 
data of Dubai, this study has shown the feasibility of adopting Physics-informed Neural Networks (PINNs) to predict the temperature 
within the pavement layer, despite the complex mixed boundary conditions. Moreover, the i-PINN can be used to estimate the thermal 
diffusivity with an error of around 0.0001 m2/h, using temperature data taken from five depths of the asphalt layer. The contribution of 
this study, is therefore, a novel condition monitoring of asphalt pavements that can significantly improve existing road maintenance 
programs. 
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1. Introduction 

Climate resilience in the context of pavement refers to the pavement's capacity to endure and maintain its intended 
performance despite the challenges posed by a changing climate. [1]. The long-term pavement performance is highly 
influenced by the ambient temperature and moisture [2]. In the desert climatic conditions of the United Arab Emirates, 
temperature may play a bigger role on the rate of deterioration. According to the 2022 IPCC report (2022) [3], a hotter 
climate is inevitable in the coming decades. This is consistent with the total observed increase in global surface temperature 
observed historically, and the UAE conditions where the air temperature has risen by around 1℃ in the past few decades [4]. 

The expected increase in temperature can significantly affect the structural performance of asphalt pavements [5], as the 
stresses and strains induced is heavily dependent on the temperature profile within the layers [6,7]. The temperature in the 
surface layers is influenced by the ambient temperature through radiation and convection, while the heat is transferred 
through the underlying layers via conduction [8]. In the summer, these high temperatures can soften the asphalt layers, 
leading to bleeding or rutting [9], and temperature fluctuations can cause thermal fatigue damage [10,11].  As asphalt concrete 
pavements continue to deteriorate with time because of asphalt layer aging, cumulative traffic loads, environmental 
conditions, and/or inadequate maintenance [12], condition monitoring to assess the pavement health is crucial. 

With the development in the Internet of Things (IOT) technology, embedded sensors have begun to play a major role in 
the condition (or health) monitoring of civil engineering structures. In the case of pavement structures, the condition 
monitoring of an asphalt pavement in Ireland was carried out by developing a thermal Digital Twin Model (DTM), to describe 
the thermo-mechanical behavior of structure [13]. The thermal state of the structure is based on the one-dimensional heat 
equation, with thermal diffusivity as a characteristic parameter to be updated, as it reflects the structural health of the 
pavement. In their work, the DTM is solved numerically by means of an implicit finite-difference scheme, and the thermal 
diffusivity is updated with the periodic execution of Nelder-Mead simplex (NMS) multidimensional optimization algorithm 
[14]. In this study, a machine-learning approach is proposed to develop the DTM of the asphalt model, specifically the 
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physics-informed neural network model (PINN). While this study builds on the work of [13], in the present work, both 
the solution of the digital twin and the parameter updating are carried out simultaneously through the inverse-PINN 
model. 

 
2. Background 

An asphalt pavement structure is a multi-layer system constantly interacting with its environment, with each layer 
having its own thermo-mechanical properties. The temperature in the surface layers is influenced by the ambient 
temperature through radiation and convection, while the heat is transferred through the underlying layers via conduction 
[8]. Since the pavement thickness is smaller than the other dimensions of the road, the one-dimensional thermal 
conduction phenomenon is generally adopted [8,15]. The continuous changes in the environment (such as the 
surrounding air temperature, solar radiation and wind speed) significantly affects the material properties and the 
performance of asphalt, making the heat flow process unsteady and varying in time and space [16,17], and the transient 
(unsteady) one-dimensional Fourier heat conduction equation is given by 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=∝
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2

 
 

Where T is the temperature in ℃, 𝑥𝑥 denotes space in 𝑚𝑚, 𝜕𝜕 denotes time in ℎ𝑟𝑟 and ∝ is the thermal diffusivity in 𝑚𝑚2/ℎ𝑟𝑟.The 
overall rate of heat flow to and from the surface of the pavement layers can be expressed as 

𝑞𝑞𝑛𝑛𝑒𝑒𝑒𝑒 = 𝑞𝑞𝑐𝑐 ± 𝑞𝑞𝑟𝑟 ± 𝑞𝑞𝑘𝑘  
where 𝑞𝑞𝑐𝑐 and 𝑞𝑞𝑟𝑟 are the heat flux due to convection and radiation respectively, 𝑞𝑞𝑘𝑘 is the conduction heat flux in 𝑊𝑊 𝑚𝑚2⁄ . The 
heat convection equation, from Newton’s law of cooling, is given as 

𝑞𝑞𝑐𝑐 =  ℎ𝑐𝑐 [𝜕𝜕𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠 − 𝜕𝜕𝑎𝑎𝑎𝑎𝑟𝑟] 
where ℎ𝑐𝑐 is the heat convection coefficient in 𝐽𝐽 (𝑚𝑚2.℃)⁄ , and  𝜕𝜕𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠 and 𝜕𝜕𝑎𝑎𝑎𝑎𝑟𝑟 are the surface and air temperatures 
respectively. 
 
The heat transfer by radiation, 𝑞𝑞𝑟𝑟  includes the solar radiation absorbed, 𝑞𝑞𝑠𝑠  and the energy emitted by the pavement surface 
as long-wave radiation. At the pavement surface the total heat flux, 𝑞𝑞𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠 can be expressed as 

𝑞𝑞𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠 =  𝑞𝑞𝑟𝑟 ± 𝑞𝑞𝑐𝑐 =  𝑞𝑞𝑠𝑠 + ℎ [𝜕𝜕𝑎𝑎𝑎𝑎𝑟𝑟 − 𝜕𝜕𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠] 
where h is the comprehensive heat transfer coefficient that accounts for convection and radiation i.e ℎ =  ℎ𝑐𝑐 +  ℎ𝑟𝑟  where 
ℎ𝑟𝑟 is the long-wave radiation. The surface flux may be reconstructed as 

𝑞𝑞𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠 = ℎ ∗  [𝜕𝜕𝑒𝑒𝑠𝑠𝑠𝑠 − 𝜕𝜕𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠] 
where 𝜕𝜕𝑒𝑒𝑠𝑠𝑠𝑠 is a synthetic temperature that considers the effect of atmospheric temperature and solar 
radiation, and is given by [17] 

𝜕𝜕𝑒𝑒𝑠𝑠𝑠𝑠 =  𝜕𝜕𝑎𝑎𝑎𝑎𝑟𝑟 +
𝑞𝑞𝑠𝑠 

ℎ
 

As the effect of changes in the heat transfer coefficient due to radiation is very small in most cases, and 
the influence of the wind speed on ℎ𝑐𝑐  is dominant, ℎ may be computed as [17] 

ℎ =  𝑐𝑐1 ∗ 𝑣𝑣 + 𝑐𝑐2 
where 𝑣𝑣 is the wind speed in m/s and 𝑐𝑐1 and 𝑐𝑐2 are empirical coefficients. The solar energy absorbed 
by the pavement is proportional to its absorptivity, 𝑎𝑎 as 

𝑞𝑞𝑠𝑠 =  𝑎𝑎 𝑞𝑞𝑠𝑠olar  
where 𝑞𝑞𝑠𝑠olar is the solar radiation intensity at the surface in 𝑊𝑊 and 𝑎𝑎 = 1 − 𝑎𝑎� where 𝑎𝑎�  is the albedo. 
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2.1. Numerical Solution for Pavement Temperature Distribution 
The approaches for predicting the temperature of the asphalt pavement layer may be divided into three primary 

categories. The analytical [18] and numerical approaches are based on the heat transfer theories and thermal properties of 
of asphalt pavement, while the empirical method, uses regression modelling techniques to learn the relationship between 
measured pavement temperatures and climatic data [5]. Numerical models, such as the finite difference method or the finite 
finite element method, can capture complex boundary conditions more accurately than the analytical approaches and 
empirical models [8]. In this study, the Finite-Difference (FD) method is adopted to serves ground truth as the groundtruth 
model. In other words, since this is a preliminary study, and the data from sensors physically embedded in the pavement 
layer is not available, the data from the FD model is adopted instead to train and validate the Machine Learning (ML) models.  

 
2.2. Physics-informed Neural Networks  
 Due to the complexity of variabilities in boundary conditions, material properties and weather conditions, advanced 
data analytical techniques and neural network models have been adopted to predict the temperature patterns in pavement 
layers, to complement the mechanistic models [19]. In the case of Physics-informed Neural Networks (PINNs), prior  
knowledge is incorporated with the neural network models through governing differential equations that enable these 
algorithms to ‘understand’ the problem being tackled [20]. Through automatic differentiation, the heat transfer differential 
equation in Equation 1 is embedded into the neural network’s loss function by the PINN. Since the PINN model, 𝑁𝑁𝑁𝑁 is used 
to approximate the pavement temperature as 

𝑁𝑁𝑁𝑁(𝑥𝑥, 𝜕𝜕) ≈ 𝜕𝜕(𝑥𝑥, 𝜕𝜕) 
the function 𝑓𝑓 is defined as 
 

𝑓𝑓(𝑥𝑥, 𝜕𝜕) = �
𝜕𝜕𝑁𝑁𝑁𝑁
𝜕𝜕𝜕𝜕

−∝
𝜕𝜕2𝑁𝑁𝑁𝑁
𝜕𝜕𝑥𝑥2 � 

 
This enables the integration of both measurement data and the underlying physics of the problem. Further details on solving 
the PINN using Google Colab can be found in [21]. 
   
 
3. Methodology 
 As stated earlier, the goal of this study is to estimate the thermal diffusivity of the asphalt layer using the inverse-
PINN model. The first step is to develop a PINN model to accurately predict the pavement layer temperature over time and 
space (in the thickness direction), to establish the feasibility of adopting PINNs for flexible pavement modelling. To validate 
this, the finite-difference numerical model is first developed using solar radiation and ambient air temperature data. The 
description of the data, model parameters as well as the models adopted have been detailed in the following sub-sections. 
 
3.1. Model Parameters and Data Description 
 The solar radiation, ambient air temperature as well as the wind velocity was taken from the HOBO Weather station 
installed in the BITS Pilani Dubai Campus in Dubai, United Arab Emirates for a day in the month of January. The thickness 
of the pavement was assumed as 2 m at which the temperature was assumed to be 20℃. The other model parameters adopted 
for the heat transfer model are given in Table 1. 
 

Table 1: Model Parameters for Heat Transfer Model. 
c,J/(kg℃) 𝜌𝜌, kg/m3 k,W/(m ℃) 𝜕𝜕 𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠

0  𝑎𝑎 = 1 − 𝑎𝑎� 

980 2350 1.28 27 0.87 
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The thermal diffusivity, ∝ is computed as 

∝=
k
𝜌𝜌𝑐𝑐

 

for the PINN model, ∝ and is the parameter to be computed in the i-PINN model. Here 𝑘𝑘 is the thermal conductivity, 𝜌𝜌 is 
the density of the solid material, c is the specific heat capacity and 𝜕𝜕 𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠

0  is the pavement surface temperature at time k =0. 
 
3.2. Numerical Model Description 

In order to compute the temperature in the asphalt pavement in space and time, the pavement thickness direction is 
divided into N layers (or grid elements) and K time intervals. The 𝑁𝑁𝑒𝑒ℎ layer represents the bottom of the asphalt layer 
in this study and the time starts at 𝜕𝜕 = 0; thus 𝜕𝜕𝑛𝑛𝑘𝑘 represents the temperature of grid n at time k. The bottom temperature 
is assumed as a constant temperature boundary, and a mixed boundary is assumed at the top surface, to account for the 
various external factors. The finite difference model is adopted from [17] as follows: 

 
 
         Internal Element :          �1 + 2𝜆𝜆∆𝜕𝜕

𝜌𝜌𝑐𝑐∆𝑥𝑥2� � 𝜕𝜕𝑛𝑛𝑘𝑘+1 =  𝜆𝜆∆𝜕𝜕 𝜌𝜌𝑐𝑐∆𝑥𝑥2� �𝜕𝜕𝑛𝑛−1𝑘𝑘+1 − 𝜕𝜕𝑛𝑛+1𝑘𝑘+1� + 𝜕𝜕𝑛𝑛𝑘𝑘 (1) 

  
Mixed Boundary Condition:  

1 + 2 �𝜆𝜆∆𝜕𝜕 𝜌𝜌𝑐𝑐∆𝑥𝑥2� � �ℎ∆𝑥𝑥 𝜆𝜆� � + 2 �𝜆𝜆∆𝜕𝜕 𝜌𝜌𝑐𝑐∆𝑥𝑥2� � �𝜕𝜕1𝑘𝑘+1�

= 2 �𝜆𝜆∆𝜕𝜕 𝜌𝜌𝑐𝑐∆𝑥𝑥2� � �𝜕𝜕2𝑘𝑘+1 + �ℎ∆𝑥𝑥 𝜆𝜆� �𝜕𝜕𝑒𝑒𝑘𝑘+1� + 𝜕𝜕1𝑘𝑘 
(2) 

  
𝜕𝜕𝑁𝑁𝑘𝑘 = 𝜕𝜕0 (3) 

Constant Boundary Condition : 
           
4. Results and Discussion 

The temperature predicted using the PINN model is compared the finite-difference (groundtruth) model in Figure 
1. The PINN is trained using only the boundary conditions (initial, surface and bottom boundary conditions). The total 
loss function minimizes the error at these locations as well as the loss function 𝑓𝑓. As can be seen, the PINN can predict 
the temperature in space (upto pavement thickness of 2m) and time with sufficient accuracy. 

 
Fig. 1: Comparison of heat distribution of (a) Ground-truth model and (b) Prediction from PINN model 
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Given that the PINN can replicate the results of the finite-difference model, the i-PINN model was implemented to 
to estimate the thermal diffusivity. For this, the assumption was made that the data at 4 different depth, 𝑥𝑥 =
0.005, 0.02,0.1,0.2 have also been made available. This is done to replicate the conditions when the temperature data will 
be available from physical embedded sensors that can measure the temperature every hour. The results are shown in Figure 
2, where the depth of the asphalt layer was assumed to be 0.3m. This was based on the previous study results [13] on the 
thermal digital twin, where only the data for the top 30 cm was utilized for estimating the thermal diffusivity. Moreover, in 
the PINN model results the temperature pattern after 0.3m did not show much variation. The thermal diffusivity estimated 
from the i-PINN model was 𝜆𝜆𝑒𝑒𝑠𝑠𝑒𝑒 = 0.0022 m2/h as compared to 𝜆𝜆𝑟𝑟𝑒𝑒𝑎𝑎𝑟𝑟 = 0.0021 m2/h . 

 

 
Fig. 2: Comparison of heat distribution of (a) Ground-truth model and (b) Prediction from i-PINN model 

 
4. Conclusion 

In this study, a thermal DT was developed for a typical pavement section based the one-dimensional heat equation using 
PINNs. The objective was to demonstrate how the thermal diffusivity values, which reflect the pavement condition [13], can 
be updated to achieve thermal twinness using i-PINNs. For this study, the bottom boundary condition for the i-PINN model 
corresponds to a depth of 30 cm, ignoring the edge effects. The model can be extended to the estimation of the thermal 
diffusivity of all the pavement layers, which has been left for a further study. Moreover, a continuous condition monitoring 
system can be established by periodically updating the i-PINN model with real-time data. 
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