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Abstract - The purpose of this study is to examine the effect of mislabeled data in the training data on the judgment results for 
reinforcement corrosion by the impact sounds of a steel ball colliding based on a neural network. For this purpose, the impact sounds of 
RC specimens with different corrosion levels were recorded, and the effects of contaminating with data in which corrosion has progressed 
beyond the target corrosion level into the positive training data were examined. As a result, it was found that the true positive rate 
decreased as the contamination rate increased when mislabeled data in the judgement the corrosion level of 1% was included. In addition, 
in the judgement of the corrosion level of 3%, the true positive rate tends to reduce when mislabeled data is included, but it was clarified 
that it is less affected by contaminating with the mislabeled data than the judgement of the corrosion level of 1%. 
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1. Introduction 

In recent years, the studies using machine learning have attracted attention as non-destructive inspection techniques for 
RC structures. One of them is the use for hammering test, and many studies have been conducted mainly for detecting 
deformation such as loose part and stripping [1]-[5]. In addition, we have also proposed a method for determining the 
presence or absence of rebar corrosion that combines hammering test and machine learning [6], [7]. Many of these methods 
are premised on the collecting of positive training data. Considering application to the inspection of existing structures, it is 
difficult to collect data in the early stages of deterioration, especially when no appearance deformation is observed, and it is 
assumed that data which is inconsistent the level of degradation of the data to be inspected, i.e. mislabeled data, will be 
collected. It is also conceivable that the contamination of these mislabeled data may have an adverse effect on the inspection 
results, but there are few studies that focus on this. Accordingly, this study aimed to examine the effect of contamination 
with mislabeled data in the positive training data on the judgment results of rebar corrosion by the impact sounds of a steel 
ball colliding based on a neural network. 

 
2. Experimental Procedure 
2.1. Materials 

Fig. 1 shows a layout of test specimens. The shape of these specimens is rectangle with dimensions of 300 mm×300 
mm×120 mm, which models a part of a RC wall, and has four D13 (SD295A) reinforcing bars with a space of 63 mm inside. 
Concrete cover thickness is 77 mm on the colliding surface side where the impact sounds are recorded, and 30 mm on the 
opposite side. Table 1 shows the mix proportion of concrete. Eight specimens are prepared with the same mix proportion 
and subjected to water-curing for a month. The compressive strength is 34.8 N/mm2 (material age 28 days). Corrosion 
method of reinforcing bars is electrolytic corrosion. The target corrosion level is set to 1%, 3%, and 6%, and the energization 
time spent on the electrolysis is set to 28.2 hr. per 1% corrosion level with reference to previous study [8], [9]. Four specimens 
(No. 1~4) are corrosion specimens that are subjected to electrolytic corrosion, and the remaining four (No. 5~8) are controlled 
specimens that are not electrolytically corroded. 
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No corrosion cracks were observed on the surface of any specimen with a corrosion level of 1% after electrolytic 
corrosion. However, at the corrosion levels of 3% and 6%, corrosion cracks were observed only on the back surface and 
some side surfaces where the concrete cover thickness was small. On the other hand, no corrosion cracks were observed 
on the colliding surface on the opposite side of any specimens. Fig. 2 shows an example of the corrosion crack 
distribution on the back surface of the specimen at the corrosion level are 3% and 6%. Corrosion cracks with a width of 
less than 0.2 mm were commonly observed for all specimens at the corrosion level of 3%, and at the final corrosion 
level of 6%, the crack width that occurred at a corrosion rate of 3% increased only slightly. 

 
2.2. Recording Impact Sound 

In this study, drop collision of a steel ball was employed as the impact method considering the reproducibility of 
the experiment. As shown in Table 2, a steel ball with a diameter of 20 mm and a mass of 31 g was dropped from a 
height of 810 mm. The impact position was the range in the center of the colliding surface (50 mm ×50 mm). The 
specimens were placed on the floor with the colliding surface facing up, with 60 mm thick polystyrene foam was 
interposed between the specimen and the floor to eliminate the influence of the support conditions. 

        
 
                       (a): Corrosion level of 3%                    (b): Corrosion level of 6% 
          Fig. 1: Specimen specifications                                  Fig. 2: Corrosion crack distribution (specimen No.1) 

Table 1: Mix proportion 

 

Water Cement Sand Gravel AE agent
W C S G A

20 60 3.0 175 292 680 1060 3.5

Maximum
aggregate size

 G max (mm)

Weight per Unit Volume (kg/m3)Water
cement ratio

W /C (%)

Amount
of air
(%)

Table 2: Drop collision conditions of a steel ball 

 

Diameter Mass Drop
height

Kinetic
energy

Momentum Collision
velosity

Maximum
impact force

Contact
time

(mm) (g) (mm) (J) (kgm/s) (m/s) (N) (µs)

20 31 810 0.246 0.123 3.98 4361 91
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The impact sounds at the time of colliding were recorded by a microphone (sensitivity 50 mV/Pa) installed at a position 
300 mm above the colliding surface. The sound pressure output as a voltage from the microphone was A/D converted by a 
data logger with a sampling rate of 100,000 samples per second and recorded as the time -domain responses. In this study, 
the sampling length is 40 ms. The impact sounds were recorded four times in total, before the electrolytic corrosion and after 
the corrosion levels of 1%, 3%, and 6%. 

 
2.3. Judgement for Rebar Corrosion Based on Neural Network 
 
2.3.1. Neural Network Model 

High-precision analysis is possible by using neural network models with multiple intermediate layers, but they require 
a huge amount of training data. In this study, because the number of data samples that can be used for learning is limited due 
to sample collection in the laboratory, the neural network model with a minimal configuration consisting of the input layer, 
one intermediate layer, and the output layer is adopted. The number of nodes in the intermediate layer is set to 8, and the 
number of epochs is set to 400. As the learning method, back propagation and gradient descent are adopted, in which the 
node errors of intermediate layer are calculated in order from the node errors of output layer, and the weight of the joint is 
updated based on the errors. In addition, the activation function is used the sigmoid function. 
 
2.3.2. Feature 

The recorded time-domain responses of sound pressure were converted into spectra by discrete Fourier transform, and 
then normalized so that the maximum value became 1.0. Since Fourier transform is performed on the time-domain responses 
cut into the sampling length of 40 ms, the frequency resolution is 25 Hz. Because it is concerned that S/N ratio will be low 
at high frequencies, cutoff frequency on the high frequency side is set to 5000 Hz. In addition, since the band below 500 Hz 
is removed from the analysis to prevent the influence of DC offset and spectral leakage, one spectrum has 181 features in 
the range of 500 to 5000 Hz. Fig. 3 shows an example of the spectra at each corrosion level including before electrolytic 
corrosion. As a general trend, the entire waveform shows similar trends at corrosion levels of 0% and 1%, and at corrosion 
levels of 3% and 6%, the maximum peak frequency is smaller than at corrosion levels of 0% and 1%. Comparing the 
corrosion levels of 3% and 6%, the difference between the two is remarkable in the band after the maximum peak frequency. 
 

 

 
Fig. 3: Spectra for each corrosion level 
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2.3.3. Data Set 
As shown in Table 3, the impact sound data can be divided into 7 categories according to the presence or absence 

electrolytic corrosion and the difference in recording occasion. In each category, because 16 impact sounds are recorded 
each specimen, one category consists of 64 input data. Since there are 7 categories from C0 to N3, the entire category is 
data group consisting of 448 data. From this data group, training data and test data are randomly selected while avoiding 
duplication between both data. At this time, the data with a different corrosion level from the positive test data to be 
judged is contaminated into the positive training data used for learning. Table 4 shows the number of impact sound data 
selected. For each judgement, the learning is performed using a total of 96 training data, and then the judgement is 
performed using a total of 128 test data. 

 

Table 3: Classification of impact sound data 

 
 

Category Recording occasion Actual conditons Target specimens

C0
Before electrolytic corrosion

(Corrosion level of 0%)
Negative

C1 As of  target corrosion level of 1%

C3 As of  target corrosion level of 3%

C6 As of  target corrosion level of 6%

N0 Same as C0

N1 Same as C1

N3 Same as C3

Negative
Non corroded specimens

No.5~8

Corroded specimens
No.1~4

Positive

Table 4: The number of impact sound data selected 

 

Positive Negative Negative
Labeled Mislabeled

0% 32 96 32 0 64

20% 32 96 26 6 64

50% 32 96 16 16 64

80% 32 96 6 26 64

100% 32 96 0 32 64

Test data Training data
Positive

Contamination rate
of mislabeled data

Number of data
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2.3.4 Judgement and Evaluation Method 
Rebar Corrosion is judged by this neural network based on the amplitude of the output value from only one node on the 

on the output layer for the input of the spectra to the input layer. The output value is in the range of 0.0 to 1.0. process, 1.0 
1.0 is set as the output value for training data presence of corrosion, and 0.0 is set for absence. In judging process of the test 
test data, the output value is equal or more than 0.5 interpreted to be present corrosion, and less than 0.5 to be absent. There 
There are two predicted conditions: Predicted Positive, which determines that there is corrosion, and Predicted Negative, 
which determines that there is no corrosion. All 128 test data are judged as either. However, these positive and negative 
predictions are not limited to that correspond to the actual positive and the actual negative, which are the presence or absence 
of corrosion, and misjudgement is unavoidable. The test data is hence classified into one of the four categories True Positive, 
False Negative, False Positive, and True Negative. 

 
2.3.5 Judgement Conditions 

In this study, the effects of the contamination with the mislabeld data in the positive training data used for learning on 
the judgment results is examined. The focus is on the judgement of the corrosion levels of 1% and 3%, which are the early 
stages of rebar corrosion. As shown in Table 5, the data categories C3 or C6 are contaminated into the positive training data 
at 20%, 50%, 80%, and 100%. A total of 14 cases were judged, including the type without contamination for comparison. In 
this study, the cross-validation was adopted to evaluate the performance of the neural network model, and each type was 
tried four times. 
             

Table 5: Judgement conditions 

 

Category Number Rate

(Table 3) (Table 3)
C1－0 － 0 0%

C1－20C3 6 20%

C1－50C3 16 50%

C1－80C3 26 80%

C1－100C3 32 100%

C1－20C6 6 20%

C1－50C6 16 50%

C1－80C6 26 80%

C1－100C6 32 100%

C3－0 － 0 0%

C3－20C6 6 20%

C3－50C6 16 50%

C3－80C6 26 80%

C3－100C6 32 100%

Type

Contamination of mislabeled data

C3

C6

C6

Category of test data

Positive
C1

Negative
C0， N0， N1

Positive
C3

Negative
C0， N0， N3
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3. Judgement Results 
 
3.1. Judgement of C1 
 
3.1.1. Contamination of C3 

Fig. 4 shows the Judgement result of C1 in the case of contaminating with C3 in the positive training data. For 
comparison, the result of the judgement without contamination of C3 ("C1-0" in Table 5) are also shown. Fig. 4(a) shows 
that although there are differences in each trial, the accuracy gradually decreases as the contamination rate of category 
C3 increases compared to 0%. This can be said to be due to the significant drop in the true positive rate shown in Fig. 
4(b). In the judgement of C1, the true positive rate was greatly affected by the contamination of C3, and there was a 
tendency for the number of false negative to rise. 

 
3.1.2. Contamination of C6 

Next, Fig. 5 shows the judgement result of C1 in the case of contaminating with C6, which is corroded than C3 in 
the positive training data. As can be seen from the figure, the accuracy goes down as the true positive rate decreases as 
the contamination rate of C6 increases, the same as the case where C3 is included. Compared to Fig. 4, the drop in the 
true positive rate is greater as the contamination rate rises, and a reduction is particularly conspicuous when the 
contamination rate in C6 exceeds 50% (Fig. 5(b)). 

From the above, it can be said that it is necessary to collect training data that is consistent with the corrosion level 
of the test data as much as possible in the judgement of the early stage of corrosion C1 (corrosion level of 1%) for the 
purpose of the screening inspection. However, in the judgment of category C1 performed in this study, even in the ideal 

   
                              (a): Accuracy                                           (b): True positive rate                                    (c): True negative rate 

Fig. 4: Judgement of C1 (Contamination of C3) 
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                              (a): Accuracy                                           (b): True positive rate                                    (c): True negative rate 

Fig. 5: Judgement of C1 (Contamination of C6) 
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judgement conditions "C1-0" with a contamination rate of 0%, the true positive rate is about 80%. It should pay attention that 
even if contamination can be avoided, about 20% will be judged as false negative. 

 
3.2. Judgement of C3 

Fig. 6 shows the Judgement result of C3 in the case of contaminating with C6 in the positive training data. The figure 
shows that although there is a variability in each trial, both the accuracy and the true positive rate maintain values equivalent 
to those of the judgement conditions" C3-0" up to 50% of the contamination rate. Therefore, it can be said that the 
influence of the contamination with the mislabeled data is less than the judgement of C1. 

Based on the above, it is possible that even if the mislabeled data is contaminated in the judgement of corrosion 
level of 3%, it can be determined with the same accuracy as when there is no contamination if the contamination 
rate is low. However, further investigation is necessary in the future because there is variation in each trial and the 
recording conditions for the impact sounds are limited. 

 

4. Conclusion 
In this study, the effect of mislabeled data on the judgement results was investigated in the judgement method for rebar 

corrosion by using the impact sounds based on a neural network. The findings obtained are shown below. 
In judging the corrosion level of 1%, when the corrosion levels of 3% and 6% were contaminated in the positive training 

data, it was found that the higher the contamination rate, the more the true positive rate tended to decrease. When collecting 
positive training data, it was found desirable to collect data with a similar corrosion level consistent with that of the test data. 

In the judgement of the corrosion level of 3%, the true positive rate decreased due to the contamination of mislabeled 
data, but it was confirmed that it was less affected than the judgement of the corrosion level of 1%. 

This study was an investigation under limited conditions. It is necessary to accumulate a large amount of data through 
experimental studies that consider a wide range of conditions, such as the dimensions of the specimens, the number and 
position of rebars, and the corrosion method so as to target general structural members. 
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