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Abstract – This paper presents an analytical method for optimising the shape of statically determinate structural elements in flexure 

aiming at minimising the maximum deflection. This analytical method provides an efficient evaluation of the optimal section to add 

material needed for reducing the deflection. The detailed mathematical derivation of the analytical method is provided, including 

symmetric and unsymmetric cases. To evaluate the performance of the proposed method, an optimisation example is presented, which 

shows the proposed method has better performance than the existing method [1]. The applicability of the proposed method is discussed 

at the end of the paper. 
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1. Introduction 
Structural optimisation includes mainly three categories: size optimisation, shape optimisation and topology 

optimisation [2]. Among these three types, shape optimisation focuses on finding the optimal shape of structural elements, 

aiming at minimising the defined objective function (such as mass) whilst satisfying imposed constraints (such as 

displacements, stresses and natural frequencies). In the domain of civil engineering, shape optimisation has been applied in 

the design of many types of structures, from beams, dams, to shell structures [3]–[6]. By shape optimisation, the volume of 

material can be reduced, leading to less CO2 emissions. 

Shape-optimised concrete structural elements have variable sections, which cannot be realised by traditional prismatic 

formworks but other formwork techniques, such as fabric formwork [7]. To really use them in concrete structures, these 

shape-optimised structural elements need to satisfy the conditions of both Ultimate Limit State (ULS) and Serviceability 

Limit State (SLS).  

For optimising structural beams in reinforced concrete, previous studies mainly focus on the shape optimisation for 

ULS, ensuring that each section has adequate flexural and shear strength resisting to the corresponding bending moment 

and shear force, whilst shape optimisation for SLS has been inadequately studied. However, shape-optimised beams are 

more prone to the problem of excessive deflection than their prismatic counterparts due to the reduction of flexural 

stiffness [1]. The shape optimisation for deflection control is therefore worth investigating. 

Previous work in SLS optimisation [1] made simplifying assumptions that may lead to inaccurate results in statically 

determinate beams. This paper improves on such previous approaches by returning to first principles to propose a revised 

analytical method which allows the optimisation of statically determinate structural elements in flexure for deflection 

control. The mathematical derivation will be given in detail in this paper. 

 

2. Analytical Method 
2.1. Hypotheses 

The objective of the shape optimisation problem discussed here is to reduce the maximum deflection of a beam so that 

it does not exceed the maximum allowable deflection at SLS. The original shape can be either prismatic or variable-section 

with the shape obtained from ULS-based shape optimisation. As the starting point of the optimisation, it is assumed that, 

with the original shape, the maximum deflection cannot meet the SLS requirement, so that the shape optimisation for 
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deflection control is necessary. Then, the question is how to increase the flexural stiffness of the beam by adding 

materials somewhere along the span. The optimisation problem is therefore transformed into: finding the position of 

the best section along the span where adding a unit mass of material can lead to the maximum decrease in the overall 

maximum deflection of the beam. 

A simply-supported beam can be taken as example, as shown in Fig. 1. The section is rectangular and variable 

along the span. This original shape is assumed to be obtained from ULS-based design – every section is designed to be 

capable of resisting to the bending moment and shear force, however, the maximum deflection, which appears at the 

mid-span section, exceeds the maximum allowable value. It is therefore necessary to determine where to add material 

in order to reduce the maximum deflection in the most efficient way.  

 

 

 
Fig. 1: Shape optimisation of a simply supported beam under uniformly-distributed loads for deflection control 

 

It is hypothesised that the beam is Euler–Bernoulli beam and the shear effect can be ignored:  

d2

d𝑥2
(E𝐼(𝑥)

d2Δ

d𝑥2
) = 𝑞(𝑥) (1) 

where Δ is the deflection, 𝑞 is the load, 𝐸 is the elastic modulus (constant) and 𝐼 is the moment of inertia of the section. 

 

2.2. 𝝏∆/𝝏𝑰𝒊 in symmetric cases 

In general, the deflection of a beam at 𝑥 = 𝑥𝑖 can be obtained by integration from where the boundary condition is 

applied (𝑥 = 0) to the section at 𝑥 = 𝑥𝑖, as shown in Eqs. (2)-(3) below, where 𝜃 is the rotation, 𝜅 is the curvature, 𝜃0, 

Δ0, 𝜃𝑖 and Δ𝑖 are respectively the rotation and the deflection at 𝑥 = 0 and at 𝑥 = 𝑥𝑖.  

𝜃𝑖 = ∫ 𝜅𝑑𝑥
𝑥=𝑥𝑖

𝑥=0

+ 𝜃0 (2) 

Δ𝑖 = ∫ 𝜃𝑑𝑥
𝑥=𝑥𝑖

𝑥=0

+ Δ0 (3) 

The value of curvature 𝜅𝑖 of each section can be obtained by Eq. (4): 

𝜅𝑖 =
d2Δ

d𝑥2
= −

𝑀𝑖

E𝐼𝑖

 (4) 

where 𝑀𝑖 and 𝐼𝑖 are respectively the bending moment and the moment of inertia of the section at 𝑥 = 𝑥𝑖. 

For the beam in Fig. 1, it is obvious that the maximum deflection appears at the mid-span where 𝑥 = 𝐿/2. 

Therefore, one important step is to evaluate the derivative 𝜕∆/𝜕𝐼𝑖  of each section. The complexity of this is that the 

rotation 𝜃0 at the support is not constant – its value depends on the rigidity of all sections along the span.  
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One solution is to assume the value of rotation at the support 𝜃0 and obtain the rotation of all sections along the span 

according to Eq. (2), then calculate the deflection according to Eq. (3) and check whether the deflection at another support 

meets the given boundary condition (here the deflection at the right support Δ2𝑛 is 0). If this boundary condition cannot be 

met, the initial assumed value of 𝜃0 can be adjusted till the correct value can be found after several iterations. However, 

this process often needs computers, and a straightforward analytical solution for finding the most efficient place to add 

material cannot be easily obtained. 

In order to solve this problem, it could be useful to take advantage of the symmetry of the defined problem. Owing to 

the symmetry of the beam and of the external loads, the rotation at the mid-span is zero. Therefore, the integration by Eq. 

(2) can start from the mid-span where the rotation is known as zero.  

As shown in Fig. 2, the whole span can be divided into 2n segments, and 𝑑 is the length of each segment. The 

deflection of every section can be obtained by Eq. (5) in discrete form: 

 

 

Fig. 2: Discretisation of the beam 

𝜃𝑛 = 0 

𝜃𝑛−1 = 𝜅𝑛𝑑 

𝜃𝑛−2 = 𝜅𝑛𝑑 + 𝜅𝑛−1𝑑 

… 

𝜃1 = 𝜅𝑛𝑑 + 𝜅𝑛−1𝑑 + ⋯ + 𝜅2𝑑 

𝜃0 = 𝜅𝑛𝑑 + 𝜅𝑛−1𝑑 + ⋯ + 𝜅2𝑑 + 𝜅1𝑑 

(5) 

where 𝜃0, 𝜃1…𝜃𝑛 and 𝜅0, 𝜅1…𝜅𝑛 are the rotations and the curvatures at the sections 𝑥 = 𝑥0, 𝑥1 … 𝑥𝑛, 𝑥0 is the section at 

the left support, and 𝑥𝑛 is the mid-span section.   

The deflection of every section can be obtained by Eq. (6) in discrete form: 

 

Δ0 = 0 

Δ1 = Δ0 + 𝜃0𝑑 

Δ2 = Δ0 + 𝜃0𝑑 + 𝜃1𝑑 

… 

Δ𝑛 = Δ0 + 𝜃0𝑑 + 𝜃1𝑑 + ⋯ + 𝜃𝑛−1𝑑 

(6) 

 

Combining Eqs. (5)-(6), it can be obtained that: 

Δ𝑛 = 𝑑 ∑ 𝜅𝑖𝑖𝑑

𝑛

𝑖=1

 (7) 

Combining Eqs. (4) and (7), it can be obtained that: 

Δ𝑛 = 𝑑 ∑
𝑀𝑖

E𝐼𝑖
(

𝐿

2
− 𝑙𝑖)

𝑛

𝑖=1

 (8) 
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where 𝑙𝑖 is the distance between the section i and the mid-span section. 

When reducing the mid-span deflection by adding material to a certain section, the change in the bending moment 

to the slight change of self-weight can be neglected. The bending moment due to external loads will not change neither 

when there is any change in the variable section since the studied beam is statically determinate. Therefore, the 𝑀𝑖 can 

assumed to be constant when any change happens in 𝐼𝑖.  

Then, it can be seen from Eq. (8) that a slight change in the moment of inertia of the section i will lead to the 

change in the mid-span deflection, which can be written in the continuous form when 𝑑 → 0: 

𝜕Δ𝑛

𝜕𝐼𝑖
= −

𝑀𝑖

E𝐼𝑖
2 (

𝐿

2
− 𝑙𝑖) (9) 

2.3. 𝝏∆/𝝏𝑰𝒊 in unsymmetric cases 

 

 

 

(a) Diagram of 𝑀                                                     (b) Diagram of  𝑀 

Fig. 3: Diagrams of bending moments (𝑀: the bending moment under 

real loads; 𝑀: the bending moment under virtual unit load) 

 

The limitation of the mathematical derivation above is that the beam and the external loads should be symmetric. 

In order to extend Eq. (9) to more general cases, the method of virtual power can be used. 

Assuming there is a unit load in the mid-span, the diagram of the distribution of bending moment 𝑀 can be drawn, 

as shown in Fig. 3a. The diagram of the distribution of bending moment 𝑀 under real loads can also be drawn, as 

shown in Fig. 3b.  

The mid-span deflection can be obtained by the integration: 

Δ𝑛 = ∫
𝑀𝑀̅

E𝐼
𝑑𝑙 (10) 

𝜕𝛥𝑛

𝜕𝐼𝑖
= −

𝑀𝑀̅

𝐸𝐼𝑖
2 (11) 

It can be seen from Fig. 3b that: 

𝑀̅ =
1

2
(

𝐿

2
− 𝑙𝑖) (12) 

Combing Eqs. (10)-(12), it can be obtained that: 
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𝜕Δ𝑛

𝜕𝐼𝑖
= −

𝑀𝑖

2E𝐼𝑖
2 (

𝐿

2
− 𝑙𝑖) (13) 

Comparing Eqs. (9) and (13), it can be observed that the right-hand side of Eq. (9) is twice of that of Eq. (13). In fact, 

fact, owing to the hypothesis of symmetry based on which Eq. (9) is derived, any change in 𝐼i is assumed to happen for 

both two symmetric sections at the left and right sides of the beam. In more general cases when the beam and loads are not 

necessarily symmetric, if the change in 𝐼i only happen for one single section, it will lead to the change in the mid-span 

deflection, of which the expression is given by Eq. (13). 

 

2.4. 𝝏𝑰𝒊/𝝏𝒉 

Eq. (13) provides important information about where the increase of 𝐼 can help reduce the most Δ𝑛. However, taking 

directly the value of derivative 𝜕∆/𝜕𝐼𝑖 by Eq. (13) to determine which section to add material will lead to the wrong 

answer, because there is still a gap between the increase of 𝐼 and the addition of a unit mass of material, of which the 

relation is not necessarily linear.  

The beam in Fig.1 with variable rectangular sections can be taken as an example. A unit mass of material can be added 

to increase the depth or the width of a certain section along the span. Since increasing the width is much less efficient than 

increasing the depth when the aim is to increase the 𝐼 of a section, it is therefore assumed that the unit mass of material will 

be added to increase only the depth of section ℎ by 𝛿ℎ, and the width of the section 𝑏 is constant along the span. Then it 

can be obtained that: 

𝜕𝐼𝑖

𝜕ℎ𝑖
=

𝑏ℎ𝑖
2

4
 (14) 

It can be seen from Eq. (14) that an incremental increase of the section depth 𝛿ℎ at different position along the span 

can lead to different increase of 𝐼. With regards to 𝜕𝐼𝑖/𝜕ℎ, the most efficient position to increase the depth of the section 

whose depth is already the largest. This is intuitive because when the original depth of the section is larger, the added unit 

mass of material will be located further from the neutral axis of the section, leading to more significant increase of 𝐼. 

For other shapes of section (e.g., circular sections, pipe sections, I sections, etc.), the relation similar to Eq. (14) can 

also be obtained mathematically.  

With regards to cracked sections in two materials, such as steel-reinforced concrete, the moment of inertia of cracked 

sections can be used: 

𝜕𝐼𝑖

𝜕ℎ𝑖
=

𝜕𝐼𝑒

𝜕ℎ𝑖

 (15) 

where 𝐼𝑒 is the effective moment of inertia, whose value falls between the moment of inertia of gross section 𝐼𝑔 (uncracked) 

and the moment of inertia of cracked section 𝐼𝑐𝑟 (fully cracked), which can be calculated following the method of ACI 

318-19 [8] for sections in steel-reinforced concrete. 

 

2.5. Final expression of 𝝏∆/𝝏𝒎 
Assuming a unit mass of material can be added to a certain section along the beam in Fig. (1), it can be obtained: 

𝜕ℎ

𝜕𝑚
=

1

𝑏𝜌
 (16) 

where 𝑚 is the mass per unit length, 𝜌 is the density.  

Finally, the expression of 𝜕∆/𝜕𝑚 can be obtained: 
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𝜕Δ𝑛

𝜕𝑚
=

𝜕Δ𝑛

𝜕𝐼𝑖
∙

𝜕𝐼𝑖

𝜕ℎ𝑖
∙

𝜕ℎ𝑖

𝜕𝑚
 (17) 

To summarise, to reduce the mid-span deflection by increasing the section depth of the beam, the most efficient 

position to add material is where the absolute value of  𝜕∆/𝜕𝑚 calculated by Eq. (17) is the largest among all sections 

along the span. 

For example, for steel-reinforced rectangular sections, by combining Eqs. (13) and (15)-(17), it can be obtained: 

𝜕Δ𝑛

𝜕𝑚
=

𝜕Δ𝑛

𝜕𝐼𝑖
∙

𝜕𝐼𝑖

𝜕ℎ𝑖
∙

𝜕ℎ𝑖

𝜕𝑚
= −

𝑀𝑖

2𝑏𝜌E𝐼𝑒
2 (

𝐿

2
− 𝑙𝑖) ∙

𝜕𝐼𝑒

𝜕ℎ𝑖
 (18) 

The proposed method is quite general for statically determinate structures and is applicable to a wide range of 

scenarios, because: 

- For other shapes of section (such as circular sections, pipe sections and I sections), Eq. (17) can be adjusted 

accordingly whist 𝜕∆/𝜕𝐼𝑖  will not change; 

- For composite sections, the 𝐼𝑖 of the transformed section can be used; 

- For cracked sections in materials other than steel-reinforced concrete, as long as the theoretical expression of the 

effective moment of inertia 𝐼𝑒 exists, the proposed method is still applicable.  

 
3. Optimisation example 

As shown in Fig. 4, a simply supported beam of 6 m long is under the linear load w. The design for ULS requires 

that the bending resistance of the beam should be sufficient under w = 32.8 kN/m, whilst the design for SLS requires 

that the maximum deflection of the beam should not exceed 1/250 of the span under w = 18.4 kN/m (the values of w is 

obtained from load combinations assuming the dead load G = 4 kN/m2, the live load Q = 2 kN/m2 and the beam 

spacing is 4 m). The concrete is C25/30 (𝑓ck = 25 MPa, Ecm = 31 GPa), and B500A steel bars are used for the 

longitudinal reinforcement (𝑓yk = 500 MPa, Es = 210 GPa). 

An initial shape is obtained from the design for ULS, as shown in Fig. 4a. The cross-sections in the mid-span and 

at the end of the span are shown in Fig. 4b and 4c. 3Φ20 B500A steel bars are used along the whole span, and the 

height of the beam varies from 400 mm to 200 mm. The section width is constant (200 mm), and the section height is 

designed in the way such that the bending resistance of each section is sufficient to resist the bending moment 

calculated from the ULS load combination (w = 32.8 kN/m). The minimum section height is fixed to 200 mm near the 

supports for practical reasons. The shear reinforcement is used to ensure the shear resistance, which is out of the scope 

of this study. 

A first calculation of mid-span deflection shows the beam with the initial shape obtained from the design for ULS 

cannot satisfy the requirement for deflection (the deflection calculation is based on the method of ACI 318-19 [8] 

which takes into account the cracking of sections). Therefore, the optimisation for SLS should be conducted to reduce 

the maximum deflection under w = 18.4 kN/m. 

The normalised influence lines obtained respectively by Eqs. (18) and by the method in [1] are shown in Fig. 4d. 

It can be seen that, according to the proposed method, the most sufficient position to add material is the mid-span 

section, whilst the method of [1] leads to rather different position far from the mid-span. 

To reduce the maximum deflection, the material is to be added iteratively to the beam. First, the beam is divided 

into 100 segments (101 sections), and the influence line is obtained by Eq. (18). Subsequently, a unit height of 1 mm is 

added to the section where the influence line reaches its maximum. Then, the deflection with the new shape is 

calculated. If it still exceeds the maximum allowable value, the influence line is updated and a new iteration starts, 

until the deflection satisfies the requirement. 
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Fig. 4: An example of the optimisation of statically determinate beam under uniformly distributed loads 

(a: initial shape of the beam obtained from ULS design; b: mid-span section; c: section at the end of the 

span; d: comparison of the normalised influence line with the initial shape using two different methods)  

 

The optimisation results are shown in Fig. 5. With the proposed method, the first 20 iterations mainly add material to 

the region near the mid-span, after which the addition of material comes gradually to the region further and further from 

the mid-span, as shown in Fig. 5a. After 115 iterations in total, the deflection no longer exceeds 1/250 of the span.  

In contrast, with the method in [1], the material is added to the regions near the support, which requires more material 

than the proposed method to reach the same deflection, as shown in Fig. 5b. After 185 iterations in total, the deflection no 

longer exceeds 1/250 of the span. The proposed method adds 38% less material than the method in [1] and shows a higher 

efficiency. 

   

(a) Proposed method 

 

(b) Method of [1] 
 

Fig. 5: Comparison of shape optimisation results (the beam height scaled up by 2 for visualisation) 
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4. Conclusion and discussion 
The analytical method of shape optimisation of statically determinate beams for deflection control is proposed in 

this paper, and the rigorous mathematical derivation is given. The integration method for symmetric cases and the 

method of virtual power for unsymmetric cases lead to the same result, which is general for statically determinate 

structures, and can be adapted for those with different shapes of section, multiple types of material and cracked 

sections whose mechanical behaviour is not necessarily linear. 

It can be argued whether the analytical method is still necessary, since the analysis model used in the process of 

shape optimisation can be numerical ones. For example, FEM (Finite Element Modelling) can be used to evaluate the 

optimal section to add material. However, due to the fact that the process of shape optimisation usually involves an 

enormous number of iterations, the analytical method can help save considerably computational costs and time 

compared to running a full numerical simulation for each iteration.  

To go further, analytical methods for reducing the deflection of statically indeterminate structures can be 

investigated. A probable solution is to discretise the structure into segments and use the displacement method. The 

influence of the addition a unit mass on the stiffness matrix can be evaluated for sections at different positions. 

However, the assembly and the solving of the stiffness matrix may need involving numerical tools, reducing the 

advantage of using analytical method compared to full numerical methods. In fact, the more complex the structure is, 

the less straightforward obtaining the analytical solution would be, and the more convenient full numerical methods 

would become. 
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