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Abstract - The dynamic behavior of a partially filled rectangular fluid container isolated by nonlinear hysteretic bearing is numerically 
investigated. The computational fluid domain with the presence of a submerged vertical baffle is modeled based on a velocity potential-
based Galerkin’s finite element method. The competency of the developed model is verified with the existing results. A long-duration 
irregular harmonic motion is imposed for the time domain analysis. The results indicate that the isolation system has excellent adaptability 
for different tank-fluid-baffle configurations and is very effective in controlling critical dynamic responses of the fluid tank such as 
hydrodynamic base shear and sloshing amplitudes. The peak values of the hydrodynamic responses for base-isolated and non-isolated 
tanks are evaluated for different heights and widths of the submerged baffle, where the effect of change in h/d ratio has a significant 
impact on the variation in sloshing amplitude and base shear responses as compared to the change in w/L ratio. The application of base 
isolation reduces the sloshing amplitudes by 12 to 34% in different configurations of the baffle except at h/d=0.5. The base shear is also 
reduced by 2 to 48% in base-isolated tanks depending upon different baffle configurations. The isolator displacement is invariably found 
to be maximum when h/d=0.5, irrespective of the width of the baffle. 
 
Keywords: Nonlinear hysteretic bearings, Galerkin’s finite element method, submerged baffle, long-duration irregular 
harmonic motion. 
 
1. Introduction 

Liquid storage tanks are the important lifeline structures in various field of applications essentially in public sectors, 
industries and nuclear power plants. The behavior of free surface oscillation of liquid inside these applications due to external 
physical disturbance is commonly termed as sloshing. Generally, the sloshing phenomenon has a significant impact on the 
dynamic characteristics of liquid storage containers when subjected to external forces and subsequently it has a control over 
them. Due to the excessive hydrodynamic pressure generated by sloshing, it has been observed that tanks utilised for the 
storage of different chemicals, fuels, and water are susceptible to significant damage in earthquakes. Consequently, the 
damage to these containers poses risks including fire and contamination, which can cause many societal problems [1]. 
Therefore, the investigation of sloshing characteristics in partially filled containers has been a paramount interest.  

In order to suppress the adverse effect of liquid sloshing phenomena, internal baffles are used within partially filled 
containers as anti-sloshing devices in order to mitigate the intensity of liquid sloshing. Therefore, many researchers have 
numerically examined the importance of comprehending the influence of submerged baffle within the containers, which has 
significantly affected the dynamic behavior of liquid sloshing [2-4]. Also, many studies have investigated the influence of 
vertical baffles with different configurations on suppressing the sloshing pressure through an experimental method [5,6]. 
Jiang et al. [7,8] examined the effect of internal baffles on suppressing the sway motion of the tank coupled with the internal 
sloshing flow under the wave action. In summary, the aforementioned literature primarily concentrated on the sloshing 
responses under the regular excitation or regular wave action, whereas in reality, the liquid containers may undergo irregular 
external excitations. In general, the hydrodynamic behaviour of the sloshing response under irregular motion is more complex 
than that under regular excitation. Emphasizing this point of view, a few works have focused on the effect of various irregular 
excitation in liquid sloshing problems in ground supported tanks [9-11]. 

Sometimes the mitigation of the intensity of liquid sloshing through internal components alone may not be sufficient 
while enhancing the seismic performance of liquid containers. Therefore, base isolation technique is one of the most effective 
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way to improve the dynamic behavior under different major events. The efficacy of base isolation was examined by many 
researchers [12-14]. Shrimali and Jangid examined the behavior of base-isolated liquid storage tanks using friction type 
isolator systems under real earthquake excitations [15]. In addition, they analyzed the efficacy of a New Zealand (NZ) bearing 
system to control the seismic parameters [16]. They observed that the base shear experiences an increase as the isolation 
damping surpasses a specific optimal value while it effectively mitigates the occurrence of sloshing and minimizes bearing 
displacements. Jadhav and Jangid examined the behavior of base-isolated liquid-filled tanks using sliding type and 
elastomeric type bearings systems [17]. In the summary, the above studies are mainly based on the lumped mass approach 
where the liquid is divided into three nodal masses such as impulsive, convective, and rigid. However, analysis of liquid 
containers using numerical finite element model considering the entire liquid domain could be more efficient.  

In this study, the behaviour of liquid sloshing in the baffled base isolated rectangular tank under irregular excitations is 
investigated numerically using a finite element model. As per the above discussion, it can be noted that the previous work 
mainly focused on the impact of a submerged baffle on sloshing characteristics of ground supported liquid tanks under 
irregular excitations. However, the study of examining the impact of internal baffle in a partially filled base-isolated container 
is relatively new and yet to be addressed effectively under irregular excitations, which is a vital aspect of describing the 
irregular liquid sloshing motion in these structures. Moreover, the available studies based on the tank-baffle-isolation systems 
mainly focused on a specific dimension of a baffle and the analysis are limited to the real seismic excitations. Therefore, the 
present numerical analysis includes different configurations of a baffle by varying the height and width. New understandings 
of the sloshing behavior under the irregular excitation in rectangular base-isolated and non-isolated tanks are established and 
the probable reason behind the sloshing response is revealed, which is the prime objective of this research.  

 
2. Numerical modeling 

Fig. 1 illustrates a vertically baffled base-isolated rectangular tank model, which defines the geometry of the 
problem.  

 
 
 
 
 
 
 
 
 
 
 
 

Fig.1: Vertically baffled base-isolated tank model. 
The liquid domain is represented by Ω and the boundaries such as Υs, ΥTw, and ΥTb represent the free surface, tank walls 

and base of the tank, respectively. Whereas, the liquid surface area in contact with the top surface and walls of the baffle are 
represented by ΥBt and ΥBw, respectively. The dimension of the baffle is altered by changing the width (w) and height (h). 
The liquid density is denoted by ρf. Liquid motion is governed by the well-known Laplace equation by considering the liquid 
to be incompressible, inviscid with the assumption of irrotational flow. 
 
2.1. Boundary conditions 

There are two boundary conditions required to complete the mathematical description at the free surface. The kinematic 
boundary condition states that the liquid particle must stay on the free surface. When the nonlinear components and 
atmospheric pressure are neglected, the unsteady form of Bernoulli's equation is used to produce the dynamic boundary 
condition, which is,  
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        ∂
2Ф
∂t2

+ µ ∂Ф
∂t

+ g ∂Ф
∂y

= 0 on Υs             (1) 
In the above expression Ф is the velocity potential function whereas µ and g are the liquid viscosity and gravitational 

acceleration respectively. To define the boundary condition along the tank and baffle walls, the velocity of liquid is equated 
to the instantaneous wall velocity (Vv) in the perpendicular direction (v). This condition generates the following expression, 

        ∂Φ
∂v

= Vv on Υw = ΥTw ∪ ΥBw                           (2) 
The tank bottom has an impervious surface and hence it should have a no-flux condition. Therefore, it can be stated as, 

∂Φ
∂v

= 0 on ΥB = Υb ∪ ΥBt             (3) 
 
2.2. Mathematical formulation 

The liquid domain is discretized with four noded isoperimetric quadrilateral element. Each node is associated with a 
single degree of freedom i.e. time dependent potential (Ф (x, y, t)). It can be defined as, 

Ф = ∑ Φk(t)Nk
n
k=1 (x, y)                       (4) 

Nk represents the shape function that is expressed through the natural coordinates. The Galerkin weighted-residual 
method is applied to the Laplace equation, which yields, 

∫ Ni �
∂2Ф
∂x2

+ ∂2Ф
∂y2

�dΩ = 0Ω               (5) 
The dynamic equilibrium equation can be derived by utilizing the integration by parts method based on Stoke’s and 

Green’s theorem to the above equation and it is expressed as follows, 
   1
g ∫ Ni ∑ NkΦ ̈ dΥsn

k=1 + μ
g ∫ Ni ∑ NkΦ ̇ dΥsn

k=1ΥsΥs
 + ∫ � ∂Ni

∂x
∑ ∂Nk

∂x
n
k=1 + ∂Ni

∂y
∑ ∂Nk

∂y
n
k=1  �Ω Φk dΩ =  ∫ NiVv dΥwWs

     (6) 
     [M]Φ̈ + [C]Φ̇ + [K]Φ = {F}Vv                       (7) 

The variables [M] and [C] represent the free surface matrix and damping matrix, respectively. The variable [K] denotes 
the fluid coefficient matrix, while {F} represents the force vector. These elements are defined as, Mij = ∑Mij

e, Cij = ∑Cije, 
Kij = ∑Kij

e  and Fi = ∑ Fie are the global matrices for different elements. 
Mij
e = 1

g ∫ NiNj dΥs
Υs                           (8) 

Cije = µ
g ∫ NiNj dΥs

Υs                        (9) 

      Kij
e = ∫ � ∂Ni

∂x
 ∂Nj
∂x

+ ∂Ni
∂y

∂Nj
∂y
�Ω dΩ                 (10) 

         Fie = −∫ Ni dΥ𝑤𝑤Υw
                                                    (11) 

The magnitudes of slosh amplitude (𝛱𝛱s), total pressure (Ptot) and total base shear (BStot) are obtained from the following 
expressions.  

 Πs = − 1
𝑔𝑔
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ µФ�                           (12) 

   Ptot = −ρ�∂Φ
∂t

+ µФ�                                        (13) 
          BStot = ∫ Ptotnx dΥwΥw

                                                  (14) 
Here nx denotes the unit normal vector in x direction. The impulsive component of hydrodynamic pressure can be 

obtained independently by neglecting the liquid sloshing. 
       ∂Ф

∂t
 (x, 0, t) = 0                     (15) 

However, the convective component can be obtained by subtracting the impulsive component from the total component. 
 
2.3. Characteristics of nonlinear hysteretic isolator 

The Wen's bilinear hysteretic model is considered in the present investigation to simulate the nonlinear characteristics 
of lead rubber bearings (Shrimali and Jangid 2002a). The empirical relation between force and deformation is stated as, 
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Fb = cbxḃ + αkbxb + (1 − α)FyZ                         (16) 
ωb =  2π/Tb = �kb mb⁄                                   (17) 

cb =  2mbωbξb                                             (18) 
Fy = F0W             (19) 
α = ωb

2 qmb
Fy

                                   (20) 

Here, cb and kb are the damping and pre yielding stiffness of the lead rubber isolator. Eq. (17) obtains the natural 
frequency (ωb) and time period (Tb) of the bearing based on the post yield stiffness whereas, the damping ratio (ξb) is 
obtained by Eq. (18). Mass (mb) and weight (W) express the total mass and total weight of the liquid exerted on the bearing 
and the scaled yield strength (F0) is considered to be 0.05 as obtained from literature (Shrimali and Jangid 2002a). For the 
present investigation, the period and damping of the bearing are considered as 3s and 0.2 respectively. Fy and α represent the 
yield strength (Eq. 19) and the fraction of post to pre yield stiffness (Eq. 20) of the isolator. Z is the non-dimensional 
hysteretic displacement, which is regulated by the first order differential equation as expressed in Eq. (21).   

qŻ = Aẋb + β⎹ ẋb⎹ Z⎹ Z⎹n−1 − τẋb⎹ Z⎹n                     (21) 
Here q presents the yield displacement of bearing whereas A, n, β and τ are the non-dimensional bearing factors that 

determine the shape of the hysteresis loop. Based on the literature (Shrimali and Jangid 2002a), the bearing parameters are 
kept constant with A=1, n=2, q=2.5cm whereas, the values of β and τ are considered as 0.5 for the present study.  
 
2.4. Dynamic equations for the system 

The following set of characteristics equations are established (Eqs. (22) and (23)) for the coupled system of isolated tank 
with a vertical baffle.  

[M]Φ̈ + [C]Φ̇ + [K]Φ = {F}�xġ + xḃ�                 (22) 
mbxb̈ + Fb + BS = −mbxg̈                      (23) 

Fb and BS denote the force subjected by the isolator and the base shear force. In addition, 𝑥𝑥�̇�𝑏 and 𝑥𝑥�̈�𝑏 represent velocity 
and acceleration of the isolator. The excitation velocity and ground acceleration are represented by 𝑥𝑥�̇�𝑔 and 𝑥𝑥�̈�𝑔 respectively. 
 
3. Results and discussion 

A shallow rectangular liquid tank of 10mx5m size is adopted for the present analysis where a vertical baffle is mounted 
at the tank floor. The mass density of confining liquid is assumed to be 1000 kg/m3. A finite element algorithm is established 
in MATLAB 2020b platform in which the effect of varying depth of the baffle is also analyzed for a base-isolated tank. The 
optimum mesh size is determined through a free vibration study considering the fundamental period of liquid sloshing and 
the results are presented in Fig. 2. However, a typical discretization with 400 number of elements (20x20-mesh dimension) 
is suitably adopted for the present study. 

 
Fig.2: Mesh convergence for the tank model. 

3.1. Model validation 
A square liquid tank having a filling depth of 1m and a width of 1m is subjected to a base excitation force of xg̈(t)= 0.002 

ωf
2 sinωft, where ωf  is the forced frequency of the excitation that is taken as 5.55 rad/s. The time variation of slosh amplitude 
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is obtained at the extreme corner of the right wall, as illustrated in Fig. 3. The obtained result has shown a good agreement 
with the existing solution available in the literature where a 2-D meshless local Petrov-Galerkin method is employed [18]. 

-------- Pal (2012)                             Present FEM 

 
Fig. 3: Variation in time of the surface wave at the extreme corner of the right wall 

 
3.2. Definition of the irregular excitation 

In order to examine the sloshing response under the irregular excitation, a time history of the irregular external oscillation 
needs to be generated, firstly. The irregular oscillation can be modelled in a stochastic way by the sum of a large number of 
independent linear harmonic excitations as follows, 

xg̈(t) = � ai
n

i=1
sin 2πfit  

Here the ai is the amplitude of ground acceleration, which is varied between 0.002 to 0.05 m/s2. Whereas fi is the 
excitation frequency that is considered over a range between 0.1 to 1 Hz with an increment of 0.1 Hz. Furthermore, n is the 
number of all linear sine excitations, which is considered as n=10. However, the influence of long duration irregular 
excitation on the sloshing amplitude, hydrodynamic pressure, and base shear parameters in a vertically baffled rectangular 
tank is evaluated for different depth and width of the baffle. 
 
3.3. Behavior of sloshing amplitude 

The vertical baffled tank with h/d = 0.2, 0.5, 0.8 and w/L=0.1, 0.2 are adopted in this section. Figs. 4 and 5 illustrate the 
time history responses of slosh amplitude for non-isolated and base-isolated tank respectively for different width ratios. It 
can be seen that the slosh response for the non-isolated tank is dominant at h/d=0.8 whereas for the base-isolated tank, it is 
dominant at h/d=0.5 among all of the configuration considered when w/L=0.1. While considering the width ratio (w/L) as 
0.2, the sloshing response in the non-isolated tank is dominant at h/d=0 as seen from Fig. 4(b). However, the base-isolated 
responses remained unchanged due to the increase in the width ratio, as noticed from Fig. 5. The maximum sloshing 
amplitudes are presented in Table 1 for different tank-baffle configurations. It is noticed that the magnitudes are initially 
decreases and then increases for the non-isolated tank system whereas converse effect is shown for the base-isolated system 
in each cases of width ratio considered. However, the amplitudes are decreased by about 12 to 34% due to the application of 
base isolation in different configurations of the baffle except at h/d=0.5. It demonstrates that the liquid sloshing has shown 
an adverse effect in the base-isolated tank specifically at h/d=0.5 under the application of the considered irregular excitation.  
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(a)                                                                                           (b) 

Fig. 4: Behavior of the sloshing amplitude for the non-isolated tank; (a) w/L=0.1, (b) w/L=0.2 
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(a)                                                                                           (b) 

Fig. 5: Behavior of the sloshing amplitude for the base-isolated tank (a) w/L=0.1, (b) w/L=0.2 
 

Table 1 Absolute dynamic peak responses  

w/L ratio h/d ratio Total base shear (kN/m) Sloshing amplitude (cm) Isolator displacement (cm) Non-isolated Isolated Non-isolated Isolated 
0 0 4.43 2.57 5.92 3.92 2.57 

0.1 
0.2 4.11 3.87 5.71 4.86 2.51 
0.5 4.41 3.65 4.85 5.87 2.82 
0.8 5.37 2.98 6.82 5.12 2.68 

0.2 
0.2 4.02 3.57 5.60 4.89 2.49 
0.5 4.07 3.98 4.66 6.11 2.93 
0.8 4.79 2.52 5.05 4.28 2.54 

 
3.4. Behavior of base shear 

Figs. 6 and 7 show the time history responses of base shear for non-isolated and base-isolated tank respectively for 
different width ratios. The local and global peak values of the response for the non-isolated tank are observed higher when 
w/L=0.1 as compared to w/L=0.2. Contrastingly, the peaks are invariably higher for the slender configuration of the baffle 
(w/L=0.1 and h/d=0.8), as noticed from Fig. 6(a). While for the base-isolated tank, the global peaks are invariably observed 
higher at h/d=0.5 irrespective of the width ratios, as noticed from Fig. 7. However, the occurrence of the local peaks at 
h/d=0.5 has occurred at different time instances for different baffle widths, which is clearly visible from the figure.  
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(a)                                                                                           (b) 

Fig. 6: Behavior of the base shear for the non-isolated tank, (a) w/L=0.1, (b) w/L=0.2 
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Fig. 7: Behavior of the base shear for the base-isolated tank, (a) w/L=0.1, (b) w/L=0.2 
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Furthermore, the global peak values are specified in Table 1. The non-isolated base shear values are increased and 
conversely, the base-isolated base shear values are decreased with the increase in the h/d ratios specifically when w/L=0.1. 
Subsequently, similar tendency is also noticed for the non-isolated tank at w/L=0.2 whereas for the base-isolated tank, the 
base shear is increased initially and then decreased significantly. In general, the implementation of hysteretic bearing has 
reduced the base shear in the range of 2 to 48% depending upon the configurations. 
 
3.5. Behavior of isolator displacement  

Fig. 8 shows the time history responses of the isolator displacement for different baffle configurations. It is noticed that 
the behavior of the isolator displacement is almost similar in both the width ratios. The maximum values are presented in 
Table 1 for various tank-baffle configurations. It is noticed that the isolator undergoes maximum deformation specifically 
when h/d=0.5 for different w/L ratios. Overall, the increase in the h/d ratio imparts an increase in the isolator displacement 
initially and then decreased subsequently. 
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Fig. 8: Behavior of the isolator displacement, (a) w/L=0.1, (b) w/L=0.2 
 

4. Conclusion 
The influence a long-duration irregular excitation on the dynamic behavior of a vertically baffled base-isolated 

rectangular fluid container is examined for different tank-baffle configurations using a nonlinear hysteretic bearing isolator. 
Galerkin’s finite element method is employed in the study to model the liquid domain. However, the following conclusions 
are made; 

 The effect of change in h/d ratio has a significant impact on the variation in sloshing amplitude and base shear 
components as compared to the change in w/L ratio. 

 The application of base isolation reduces the sloshing amplitudes by 12 to 34% in different configurations of 
the baffle except at h/d=0.5. 

 The base shear is also reduced by 2 to 48% in base-isolated tanks depending upon different baffle configurations. 
 The isolator displacement is invariably found to be maximum when h/d=0.5, irrespective of the width of the 

baffle. 
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