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Abstract - Concrete bridges are vital infrastructure assets, yet their inspection often relies on labour-intensive, time-consuming, and 

sometimes subjective visual assessments. This study addresses these challenges by harnessing the power of Artificial Intelligence (AI) 

and Deep Learning (DL) for streamlined bridge inspection. Building upon the limitations of traditional methods, an enhanced YOLOv8s 

model is developed and trained on a refined CONBRID-YOLOv8 dataset. This dataset is specifically designed to minimize false 

positives, a common issue in concrete bridge defect detection.  The integration of real-time data visualisation tools further empowers 

inspectors to optimize maintenance planning, ultimately enhancing bridge safety and longevity. The model exhibits exceptional 

performance in detecting and classifying prevalent concrete defects such as cracks, spalling, exposed bars, corrosion stains, and 

efflorescence. Through rigorous experimentation and analysis, the new model achieved a strong F-1 score of 0.75 and a mAP of 0.738 

after 300 epochs. Real-world field testing underscores the model's practical effectiveness.  Pioneering data visualisation techniques 

provide inspectors with the tools to rapidly interpret complex results and confidently prioritise maintenance strategies. This AI-powered 

approach represents a significant advancement in bridge inspection practices. By addressing the limitations of traditional methods & 

existing DL models, this study offers a more efficient, accurate, and objective solution for ensuring the safety and longevity of critical 

infrastructure assets.  
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1. Introduction 
Bridges globally play a vital role in transportation networks, reducing travel time and providing crucial links during 

emergencies. They enhance urban planning, ease congestion, and foster economic activities. Artificial Intelligence (AI) and 

Machine Learning (ML), especially in computer vision, have emerged as disruptive and transformative forces across multiple 

domains and civil engineering is no exception [1]. 

Concrete bridges are critical infrastructure assets, but their inspection can be costly, time-consuming, and prone to error. 

This study introduces a novel approach to bridge inspection using an enhanced YOLOv8s model and the improved 

CONBRID-YOLOv8 dataset. The new system discussed in this paper is specifically designed to reduce false positives and 

improve efficiency for bridge inspectors by integrating real-time data visualisation tools, enabling optimized maintenance 

planning and ultimately enhancing bridge safety and longevity. 

This paper is organised into the following sections as follows: Section 2 gives an overview of the Bridge Inspection 

methods and their limitations from a global and Indian perspective; Section 3 discusses existing Deep Learning (DL) 

algorithms, the YOLO framework & limitations of the previous study; Section 4 describes the present study, scope & 

objectives, and methodology Section 5 explains the field testing of the model, extraction of predicted results, data 

visualisation & analysis. Section 6 summarises the findings & provides future work.  
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2. Bridge Inspection: Present Global Scenario & Limitations of Traditional Methods 
Bridge inspections are critical for maintaining infrastructure safety and functionality. Globally, different 

standards govern inspection processes. In the USA, the National Bridge Inspection Standards (NBIS) and Federal 

Highway Administration (FHWA) regulations ensure safety [2]. They conduct visual inspections using the National 

Bridge Inventory (NBI) Condition Rating System to evaluate bridge conditions [3] [4] [5]. Europe relies on standards 

from the European Committee for Standardization (CEN) and the TU1406 specifications [6]. 

India follows IRC-SP:35 and the Bridge Inspector's Reference Manual for its inspection methodology [7].  They 

utilize a three-tiered system of Routine, Principal, and Special Inspections, emphasizing visual assessment. A 

preventive maintenance [8] approach, guided by a detailed condition assessment methodology, is central to the bridge 

management process. 

 
2.1 Manual Inspection & Limitations 

Traditional manual bridge inspection methods, while effective, come with limitations. Reliance on visual 

inspection incurs high resource costs and introduces inefficiencies due to subjective factors [9]. Human error can 

compromise accuracy, especially in challenging or high-risk locations, potentially overlooking critical issues and 

requiring additional safety measures, increasing costs. Moreover, traditional methods often cause disruptions for road 

users, necessitating lane closures or diversions. This logistical challenge, significant for heavily trafficked bridges, 

leads to time-consuming processes and longer intervals between inspections, potentially allowing issues to escalate 

before detection. Computer vision tech subsequently emerged as an augmentation technology that can aid and assist 

bridge inspectors in their manual visual inspection.  

 
2.2 Traditional Computer Vision & Image Processing 

To address the constraints of manual inspections, various research efforts have explored integrating advanced 

technologies like drones, sensors, and digital monitoring systems to improve the efficiency, effectiveness, and safety 

of bridge assessments. Traditional image processing techniques have been used for identifying defects in bridges by 

analysing visual data to detect anomalies or structural issues. Their non-destructive nature is advantageous for routine 

inspections, prioritizing the preservation of the bridge's integrity. Traditional image processing technology uses RGB 

images to conduct defect detection on a bridge structure’s surface. The traditional image processing technology 

generally needs to set the features manually, based on features such as colour, shape [10], texture [11] and others.  

Manual Pre-processing of images is also required to improve the accuracy of defect identification. However, the 

experimental results show that the detection method is complex, time-consuming, and has difficulty meeting the 

requirements of real-time performance. 

 

3  Machine Learning & DNN in Bridge Defects  
The swift progress in computer hardware and increased GPU computing power has significantly expanded the 

applications of computer vision (CV) and image processing, particularly in object detection using Deep Learning (DL) 

theory. The object detection based on DL has a better performance compared to the traditional image processing 

methods in terms of generalisation and robustness [12]. In DL-based object detection, models are generally categorized 

into two main architectures: two-stage (or two-step) detectors and single-stage detectors. These distinctions refer to 

the number of stages or steps involved in the detection process. 
 
3.1 Two Stage Detection Algorithm  

The two-stage detection algorithm in Deep Learning follows a two-step object detection process. It first 

proposes regions of interest (RoIs) in the input image, refining them in the second stage for final detection results, as 

seen in Faster R-CNN [13]. Although two-stage detectors achieve high accuracy, their complex architectures make 

them computationally intensive and challenging to train. They also exhibit slower inference speeds critical for real-

time applications like video analysis. Moreover, deploying two-stage detectors may require more computational 

resources compared to single-stage alternatives. 

 
 
 



 

 

ICSECT 146-3 

3.2  Single-Stage Detection Algorithm 

The single-stage detection algorithms usually complete feature extraction, classification and prediction in one step 

without the need for a separate region proposal step. These models directly predict bounding boxes and class probabilities 

for each anchor or pixel in the input image.  

Single-stage detectors excel in speed, making them ideal for real-time applications like video analysis. Their simpler 

architectures facilitate easier implementation, training, and fine-tuning. These detectors efficiently handle objects of various 

sizes without requiring specialized design considerations. Reduced complexity translates to fewer computational resources, 

making them suitable for resource-constrained environments. Their straightforward workflow caters to practitioners of 

varying expertise levels and allows deployment on diverse platforms, including edge devices with limited computational 

capabilities. YOLO (You Only Look Once) and SSD (Single Shot Multibox Detector) are examples of single-stage object 

detection architectures.  

 

3.3 YOLO Framework: YOLO V8 
YOLO (You Only Look Once) is a widely adopted object detection and image segmentation model created by Joseph 

Redmon and Ali Farhadi at the University of Washington. Initially launched in 2015, it swiftly gained recognition for its 

high speed and accuracy. YOLOv8, the latest version by Ultralytics introduced in 2023, builds on the success of its 

predecessors with new features and enhancements. As a cutting-edge state-of-the-art (SOTA) model, YOLOv8 excels in 

performance, flexibility, and efficiency, supporting various vision AI tasks like detection, segmentation, pose estimation, 

tracking, and classification [14]. With a new backbone network, anchor-free detection head, and loss function, YOLOv8 is 

versatile, running seamlessly on a range of hardware from CPUs to GPUs.  

 

 
Fig 1 YOLO-v8 comparison with predecessors [14] 

 

3.4  DNN Models in RCC Bridge Defect Detection 
Despite the extensive research being conducted in various defect detection domains, the predominant focus remains 

on pavement defects, particularly cracks and potholes [13]. In contrast, there is a noticeable lack of attention to defect 

detection in computer vision technology for load-bearing structures of bridges. Computer vision methods provide a promising 

solution, effectively reducing detection costs, ensuring worker safety, and enhancing overall efficiency compared to 

alternative approaches. 

The necessity to develop a multi-class, multi-target defect detection algorithm for a composite material such as 

concrete was achieved by Mundt et al. [15] who introduced the novel CODEBRIM dataset for multi-target classification of 

five commonly appearing concrete defects and developed a Meta-learning CNN.  

Licun Yu et al [16] realised the detection of bridge damage by improving faster R-CNN and achieved higher accuracy, 

however, the Faster R-CNN model is large, flexibility is poor and detection speed is slow thereby negating its practical 

applications in real-time applications [17].   

Khaled R. Ahmed [18], carried out a comparative experimental study of three algorithms—YOLOv5, YOLOR, and 

Faster R-CNN—for road surface defect detection. The findings indicate that the YOLOv5 model demonstrates exceptional 

flexibility and is well-suited for real-time detection scenarios on embedded devices. However, there is room for improvement 

in terms of accuracy, with the mean Average Precision at a confidence threshold of 0.5 (mAP@.5) reported at 58.9%.  
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Ma, D et al [19] improved the YOLOv3 network model to detect cracks and the detection speed has improved 

compared to the two-stage detection algorithm. However, the model only performs single classification and hence its 

application for practical projects is limited.   

Sergio et al [20] carried out study on YOLOv5 framework for six defect classes-cracks, corroded steel, deteriorated 

concrete, honeycombs, moisture spots & pavement degradation as per Italian guidelines using images of bridges in Italy. 

The mean average precision mAP value of the best model was 20.66%.  

 
3.5 Prototype Development: Inferences & Limitations 

In the previous study [21], a custom de-nova dataset named CONBRID-YOLOv8 was developed, containing 831 

images with an 8:1:1 split for training (658), validation (87), and testing (86). The dataset consisted of five major concrete 

defects namely cracks, spalling, corrosion stains, exposed bars, and efflorescence as per Indian Road Congress (IRC) 

guidelines. These defects can be found visually through signs of damage.  The annotation of the images derived from the 

original CODEBRIM dataset was done accurately using the Roboflow platform [22].  A prototype YOLOv8s model was 

initially trained from scratch without image augmentation. This resulted in poor performance, yielding a mean average 

precision (mAP) score of 0.165 after 150 epochs. Subsequent improvements and key limitations include: 

 Implementation of Mosaic Augmentation significantly enhanced model performance, achieving a mAP of 0.714 and 

effectively expanding the training set to 1974 images. 

 Extending training to 200 epochs further increased model accuracy to a mAP of 0.756. 

 Despite an acceptable mAP, the model tended to false positives when tested with pre-recorded videos. Common 

misidentifications included humans and everyday objects such as pens, name tags, and hats. 

 

4 Present Study & Objectives 
The present study seeks to address the limitations identified in previous research and achieve the following objectives: 

 Conduct a comprehensive comparison of all YOLOv8 framework models utilising the enhanced CONBRID-

YOLOv8 (2.0) dataset whilst solving the problem of false positives. 

 Identify a suitable lightweight YOLOv8s model for on-site testing. 

 Evaluate the shortlisted model in a field test on a concrete bridge for distress detection, generating predicted images 

and video. 

 Extract relevant data from the predicted images and video to develop data visualisation tools, including bar graphs 

and time-history graphs. 

 
4.1 Improved Dataset: CONBRID- YOLOv8 (2.0)   

 The enhanced dataset consists of 1500 images, 171 of which are designated as 'null'.  'Null' images are devoid 

of any of the five defect classes, yet contain coordinate label files with null values. Their integration into training, validation, 

and testing procedures is intended to mitigate the occurrence of false positives. The null images shown in Fig 2 consist of 

common objects, humans, and name tags that are likely to be encountered and captured during photography/videography of 

the distresses during a bridge inspection.  

 

Fig 2 Sample Null Images added to the Dataset 
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4.2 Model Training & Evaluation Metrics  

In this study, a comprehensive evaluation of all YOLOv8 framework models (YOLOv8n, YOLOv8s, YOLOv8m, 

YOLOv8l, and YOLOv8x) on the enhanced CONBRID-YOLOv8 (2.0) dataset has been carried out. All models were trained 

using identical hyperparameters for 150 epochs. To ensure sufficient computational resources, training was performed on 

Google COLAB Pro with access to A100/V100 GPUs. Preprocessing of the dataset involved two key steps: auto-orientation 

and mosaic augmentation. Model performance was assessed using established industry metrics, including F1-score, mean 

average precision (mAP), and precision-recall curves. 

 
4.3 Evaluation of Results 

Table 1 displays the performance of all five YOLOv8 models, including their training duration.  As anticipated, larger 

models (YOLOv8x, YOLOv8l, and YOLOv8m) demonstrate superior performance metrics compared to the lighter 

YOLOv8s model. YOLOv8n, being the smallest, exhibited the lowest performance. The results are compared against the 

YOLOv5 study by Sergio et al [20] for similar datasets and hyperparameters as shown in Table 2. Despite minor differences 

in defined classes, YOLOv8 models achieve higher mAP values, indicating greater accuracy and suitability for practical 

applications. 

 
Table 1: Comparison of YOLOv8 Models trained on CONBRID-YOLOv8 (2.0) 

 

Models/Metrics   YOLOv8n YOLOv8s YOLOv8m YOLOv8l YOLOv8x 

mAP@0.5 0.575 0.700 0.758 0.760 0.76 

F1 –Score 0.59 0.70 0.76 0.76 0.76 

Time Taken 1.755 Hrs 1.277 Hrs 1.875 Hrs 2.844 Hrs 2.126 Hrs 

Hardware Google COLAB Pro: A100/V100 GPU 

 

Table 2: Comparison of mAP values with YOLOv5 Models for similar dataset 

 

 

 

 

 

  

 
 

 

 

Given the objective of selecting a lightweight model suitable for deployment on edge computing devices (e.g., Android 

mobiles), the YOLOv8s model was shortlisted for further experimentation and field trials. Initial analysis of the precision-

recall (P-R) curve revealed significant variance in mean average precision (mAP) across individual defect classes.  As 

depicted in Fig 3(a), mAP values ranged from 0.592 for cracks to 0.769 for effloroscence. To mitigate this variance and 

improve overall model performance, transfer learning techniques were leveraged, and training epochs were increased to 300.  

This resulted in a substantially tighter class distribution within the P-R curve, see Fig 3(b), with all classes achieving mAP 

values above 0.70. Table 3 provides a comparative analysis of class-level mAP values between the two model iterations. 

 

 

YOLOv5  

(Ver 6) 

mAP @0.5 YOLOv8 mAP@0.5 

YOLOv5n 17.06 YOLOv8n 57.5 

YOLOv5s 18.38 YOLOv8s 70.3 

YOLOv5m 20.66 YOLOv8m 75.8 
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Fig. 3 (a) : P-R Curve of YOLOv8s – 150 Epochs Fig. 3 (b): P-R Curve of YOLOv8s – 300 Epochs 

 
Table 3 : Comparison of Class wise mAP values of both YOLOv8s Models 

 
Classes/ Model Corrosion Stain Cracks Efflorescence Exposed Bars Spalling 

YOLOv8s  

(150 Epochs) 

0.726 0.592 0.769 0.735 0.679 

YOLOv8s 

(300 Epochs) 

0.743 0.707 0.797 0.732 0.712 

 

5 Field Testing of YOLOv8s for Concrete Bridge Inspection 
The enhanced YOLOv8s model underwent field testing in Pune, a city in western India. The test site was a concrete 

bridge named "Sadhu Vaswani Pul." Images and video recordings of a specific pier were captured using an Android mobile 

device. 

 
5.1 Model Evaluation Process 

To evaluate the model's performance in a real-world setting, the following procedures were conducted: 

 Image Data: Raw images of the pier were directly fed into the model. The model then generated predicted images 

highlighting the identified defects. 

 Video Data: A video of the pier was recorded and processed by the model. This resulted in a predicted video output 

containing defect classifications for each frame. 

 Fig 4 and 5 visually demonstrate the model's ability to detect and classify the five defect classes within the bridge 

images as well as video under site conditions.  
 

5.2 Data Extraction & Visualisation: A Pioneering Innovation 

The YOLOv8s framework's versatility and Python compatibility enable seamless result extraction during the 

prediction process. Label data was obtained from both predicted images and videos, including vital information such as 

bounding box coordinates and corresponding defect classes. Additionally, the video prediction was fine-tuned to generate 

individual image frames with associated label data. This comprehensive dataset allowed for the construction of distribution 

graphs for both image and video data, as illustrated in Fig 6 (a), (b) & (c). The generation of a time-history graph is also 

demonstrated using data extracted from individual frames in Fig  7.  

To the best of current knowledge, this work introduces the first application of result extraction and data visualization 

techniques for concrete bridge distress assessment using detection models within the YOLO framework. This approach 

demonstrates the practical applications of the DL model. By providing a comprehensive overview of distress distribution and 

temporal tracking, these tools facilitate informed decision-making about repair measures and resource allocation.  
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Fig 5: Predicted Video File shown as Frames 

  
Fig 4(a) : Raw Images from Pier Fig 4(b) : Predicted Images 
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Fig 6(a) : Predicted Images of Pier Fig 6(b): Distress distribution on the predicted Images 

 
 

Fig 6 (c) : Distress distribution on Predicted Video Fig 7: Time-History Graph on Predicted Video 

 

 
6 Conclusion & Prognosis 

    This study addresses the limitations of the original YOLOv8 framework by developing an enhanced CONBRID-

YOLOv8 dataset and a lightweight YOLOv8s model to reduce false positives in concrete bridge inspections. Through 

experimentation and analysis, the new model achieved an F-1 score of 0.75 and a mAP of 0.738 after 300 epochs. Real-

world field testing demonstrated its effectiveness, and the pioneering work on data visualization provides tools for bridge 

inspectors to quickly interpret results and optimize maintenance planning.  To further enhance the system, future work will 

focus on expanding the dataset with high-altitude images and additional defect classes specifically, moss, honeycombs, and 

pavement degradation. Many more real-time data visualisation techniques like heat mapping of distresses using JSON 

capabilities of the model, Metadata & GPS coordinate extraction from drone images will be created enabling inspectors to 

make informed decisions with greater speed and clarity. This approach has the potential to significantly improve bridge 

inspection efficiency, reducing costs and enhancing infrastructure safety. 
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