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Abstract - Because of their lack of lateral force resistance or energy dissipation capability, reinforced concrete (RC) structures have 

suffered significant damage in previous earthquakes.  There is a demand to develop and improve the seismic performance of vulnerable 

existing RC buildings, particularly those not initially designed for seismic events or designed to an outdated seismic standard. Seismic 

retrofit of RC buildings using friction dampers is an innovative method to improve the seismic performance of the structures. In this 

study, nonlinear response history analysis was performed to investigate and compare the seismic performance of retrofitted buildings. 

The numerical results suggest that the maximum displacement was substantially improved after retrofitting the existing RC building with 

friction dampers. The damage concentration of the retrofitted buildings with friction dampers is reduced significantly when compared to 

the existing RC buildings. 
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1. Introduction 
Many old-reinforced concrete (RC) structures were destroyed in recent earthquakes because they lacked suitable lateral 

force resisting systems, as learned from previous earthquakes [1-5]. Demolition of seismically unstable existing buildings 

and replacement with new construction is an option based on these criteria [6-7], but it is generally time-consuming and 

costly. Furthermore, when the number of schools or hospitals in a rural area is limited, rebuilding incurs additional 

expenditures because there may be few other options for providing education or medical care. As a result, historic RC 

structures that were either not equipped for seismic effects or were built to outdated seismic requirements must be updated. 
In order to ensure that the retrofitted RC building can withstand future earthquakes, new seismic design criteria are frequently 

referred to for seismic retrofit design. 

The installation of RC walls [6], the addition of traditional steel bracing [7], and the wrapping of the RC columns with 

carbon fiber reinforced polymers (CFRPs) are some of the most often utilized retrofit methods for RC frames to enhance the 

lateral force capacity [8]. Because the braces may be prefabricated and the weight of the braces is less than the weight of the 

new structural walls, the traditional braced frame method has proven to be advantageous [7].  

For an innovative method, the installation of energy-dissipation devices such as buckling-restrained braces (BRB) [9-

15], viscous dampers [16-17], and friction dampers [24-30] are innovative approaches for improving the seismic performance 

of RC structures. Friction dampers (FD) offer a promising alternative, as they provide significant energy-dissipation from 

smaller story drift [18-22] at a relatively low cost, and are easy to install and maintain [2]. Friction dampers may be employed 

as braces, in rocking walls, or at beam ends, as in the sliding hinge joint (SHJ) for steel moment frames [24-26]. Friction 

brace dampers, in particular, affect the dynamic response by increasing stiffness and damping.  

The seismic design method is based on the constant drift method (CD method) under the same target story drift ratio of 

0.5% rad. Nonlinear response history analysis was performed to investigate and compare the damage concentration in seismic 

retrofit RC building with friction dampers.  

 

2. Seismic retrofit design concept  
Because the approach is successful in controlling the maximum story drift ratio below and near to the set target story 

drift ratio without iterative methods, this study chooses to expand the constant drift (CD) method [11-12, 18] to design the 
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requirement for energy-dissipation devices. The following is a quick step-by-step overview of the suggested design 

technique procedure: 

1. Fit the roof displacement - base shear relationship to a trilinear backbone model with elastic, cracking, and post-

yielding stages using a nonlinear modal pushover analysis on the RC frame (based on the fundamental mode). Obtain the 

RC frame's story strengths and stiffness properties. 

2. Reduce the multi-story RC frame to a single-degree-of-freedom model, known as the SDOFRC model (Fig 1.), and 

compute the present structure's energy dissipation behavior at the target drift. 

3. Using the SDOFRC displacement spectrum, determine the present RC frame's maximum story drift. If maximum story 

drift exceeds the intended story drift ratio, seismic retrofitting is required. 

4. Determine the friction damper's required lateral strength ratio in terms of SDOFRC.  

5. Distribute energy-dissipation devices to control the target story drift ratios for each story, as shown in Fig 2. 

 

                                 

Fig. 1: Simplification of the RC building to a SDOFRC [15]. 

                                      

Fig. 2: Seismic retrofit configuration. 
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3. Nonlinear response history analysis 
Nonlinear response history analysis (NLRHA) was performed for existing RC building (3D-R model) and retrofitted 

building with friction damper (3D-RF model) using a suite of eleven scaled ground motions. The detail of the ground motion 

motion can be found in the previous study [15]. An average of each response is compared in this section. 

 
3.1. Ground motions for NLRHA 

Fig 3 shows the target scaled ground motion elastic response spectra (5% damped), which is used to validate the retrofit 

method. The average results from all ground motions of each model are compared. 

 

 
Fig. 3: Target MCE and scaled ground motion. 

 

4. Numerical results 
The numerical results will be shown and discussed in this section.  

 
4.1. Maximum displacement (Dismax) 

Fig.4a and Fig.4b  shows the maximum displacement (Dismax) for both before (Fig 4a) and after retrofit the RC building 

with friction dampers (Fig 4b). Based on the CD method [11-12, 18], the numerical results indicates that the Dismax of the 

retrofitted building with friction damper reduces significantly when compared to the non-retrofitted building, as shown in 

Fig 4c. This may imply that the friction dampers improve the seismic performance of the building. 
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(a) 3D-R model 

 

(b) 3D-RF model 

 

 

(c) comparison of the average results between 3D-R and 3D-RF model 

 
Fig. 4: Maximum displacement 

 

4.2. Drift concentration factor (DCF) 

The effectiveness of retrofitted with dampers in reducing inter-story drift concentration may express of the terms of 

the drift concentration factor (DCF), as defined in Equation (1), where SDRmax,i is the maximum inter-story drift ratio 

from all stories, ur is the roof displacement; H is the total height of the building [31-32]. 

 

DCF =  
|𝑆𝐷𝑅𝑚𝑎𝑥,𝑖|𝑚𝑎𝑥

𝑢𝑟/𝐻
 (1) 

 

As shown in Fig 5, the overall results indicate that drift concentration factors (DCFs) of the retrofitted buildings are 

significantly decreased for several of the ground motions. It implies that individual stories in the retrofitted buildings tend to 
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resist earthquake action and the weak story failure of the retrofitted building may be avoided [31-32]. It implies that the 

friction damper may improve the prevention of the damage concentration for the retrofitted buildings. 

 

  

Fig. 5 Drift concentration factor (DCF) 

 

4. Conclusion 
The seismic retrofit of RC building with friction dampers are compared and discussed with their performances. The 

following conclusions may be drawn: 

1)  The NLRHA results indicated that the maximum displacement and maximum story-drift ratios were substantially 

improved after retrofitting the existing RC building with friction dampers.  

2) The friction dampers may improve the prevention of the damage concentration for the RC retrofitted buildings when 

compared to the non-retrofitted RC building. 
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