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Abstract: Constrained Backfill Retaining Walls (CBRWs) are increasingly utilized in geotechnical engineering, particularly in 
mountainous regions and densely populated urban areas where space limitations demand innovative design solutions. These walls 
exhibit unique geometric configurations, leading to complex earth pressure behaviors that deviate significantly from those observed 
in conventional retaining walls. Accurate prediction of the coefficient of active earth pressure (Ka) is crucial for ensuring the stability 
and safety of CBRWs. However, traditional methods using data-fitting software, though often yielding high R² values (up to 0.99), 
may not provide reliable predictions in real-world applications. To address these shortcomings, this study investigates the application 
of machine learning (ML) techniques, specifically Support Vector Regression (SVR), as an advanced method for predicting Ka in 
CBRWs. The current investigation models three failure mechanisms involving single, double, and triple rigid blocks, depending on 
the distance between the rock face and the retaining wall, to generate a dataset of Ka, calculated through in-house MATLAB codes. 
These computations are both time-consuming and computationally intensive, highlighting the necessity for an efficient predictive 
model. The SVR model is employed to predict Ka, and its performance is compared against conventional data-fitting approaches. 
The input parameters for the predictions include – aspect ratio (b/h), internal frictional angle of the soil (φ ), rock-face angle (η ), 
retaining wall inclination ( β ), backfill inclination (ε ), interface friction angle between rock-face and soil (δ ), and interface friction 
angle between retaining wall and soil (ψ ). The model effectiveness is evaluated using multiple error metrics. The SVR model 
achieved a coefficient of determination (R²) value of 97.4%, demonstrating strong predictive capability. In contrast, conventional 
data-fitting software exhibits limitations in accurately capturing the complex Ka behavior in CBRWs. The findings of this study 
underscore the potential of SVR to enhance the design and analysis of CBRWs by offering greater accuracy and computational 
efficiency compared to traditional methods. 
Keywords: Constrained backfill, Retaining walls, Support Vector Regression, Multi-wedge failure, Earth Pressure. 
 
 
1. Introduction 

Constrained backfill retaining walls (CBRWs) have emerged as indispensable structures in geotechnical engineering, 
particularly in scenarios where space limitations pose significant challenges. These walls are commonly employed in 
mountainous terrains and densely populated urban regions, where the availability of land for conventional retaining wall 
designs is restricted. Unlike traditional retaining walls that rely on semi-infinite backfill for stability, which leads to a 
linear distribution of active earth pressure and a single triangular failure wedge as shown in Fig. 1(a). These assumptions 
are unsuitable for CBRWs (Yang and Tang 2017), where the proximity of the rock face or other boundary constraints 
significantly alters the failure mechanisms. CBRWs feature limited backfill widths, necessitating specialized design 
considerations to account for their unique geometric and structural characteristics. The constrained backfill geometry of 
CBRWs introduces complexities in the behaviour of earth pressure as shown in Fig. 1(b), making the prediction of the 
coefficient of active earth pressure (Ka) a critical aspect of their design. The proximity of a rock face or other boundary 
conditions significantly affects the distribution and magnitude of active earth pressures, deviating from the assumptions 
of classical theories such as Rankine (1857) and Coulomb (1776). These variations have direct implications for the 
stability, safety, and cost-effectiveness of retaining wall structures, underscoring the importance of accurate analytical 
and predictive models (Chen et al. 2017). The narrow backfill geometry in CBRWs results in multiple failure wedges 
and a non-linear pressure distribution, which classical methods cannot accommodate (Ahmed and Basha 2021). 
Additionally, traditional approaches often neglect critical factors such as the interaction between the retaining wall and 
the rock face (Xu et al. 2022), the influence of varying interface friction angles, and the impact of wall inclinations or 
backfill slopes. Consequently, advancing the understanding of their behaviour and developing reliable predictive tools 
are essential to ensure their optimal performance and long-term sustainability. 
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(a) Conventional Retaining walls (b) Constrained Backfill retaining Walls 

Fig. 1: Retaining walls with (a) Semi-infinite backfill, and (b) Constrained backfill. 

In recent years, geotechnical engineering has witnessed the increasing adoption of artificial intelligence, machine 
learning (ML), and soft computing models as indispensable tools for addressing complex challenges in subsurface 
analysis and design (Mahmoodzadeh et al., 2022; Waris et al., 2024). Conventional data-fitting tools, though capable of 
producing high R² values, often fail to generalize and lack the ability to provide insights into the underlying physics of 
the problem, limiting their practical applicability in varied scenarios. ML-based predictive models have emerged as 
powerful alternatives to traditional approaches. These models excel in capturing the intricate and nonlinear behaviours 
inherent in complex systems, enabling accurate representations of active earth pressure in CBRWs. Unlike traditional 
methods, ML techniques such as Support Vector Regression (SVR) bypass restrictive assumptions, offering robust, 
efficient, and generalizable predictions. Recently, Waris et al. (2024) highlighted that meeting performance metrics alone 
does not guarantee that an AI/ML model captures the underlying physics of a phenomenon. To address this concern, they 
emphasized the use of domain-based error validation models that go beyond merely achieving goodness-of-fit criteria.  
 
1.1 Objectives 

This study aims to address the limitations of traditional regression methods in predicting Ka in CBRWs by employing 
advanced predictive models. The specific objectives include: 

1. Highlighting the shortcomings of classical theories and data-fitting approaches in capturing the non-linear and 
complex earth pressure behaviour of CBRWs. 

2. Development of a robust and efficient predictive model using ML, specifically SVR, capable of accurately 
modelling the Ka. 

3. Comparison of the performance of SVR model with traditional data-fitting tools using multiple error metrics, 
highlighting its superiority in terms of accuracy and reliability. 

4. Illustrate the potential of ML in solving complex geotechnical problems, paving way for broader applications in 
geotechnical engineering. 

 
2. Methodology 

The dataset for this study is generated by implementing the methodology proposed by Ahmed and Basha (2021), 
which employed the multi-wedge theory for calculating Ka in retaining walls with constrained backfills. This approach 
considers the reflective shear zones between the wall and the rock face and incorporates three distinct failure mechanisms 
for a comprehensive evaluation. 
 
2.1 Multi-wedge failure mechanism 

The analytical model involves three wedge failure mechanisms to simulate active earth pressure acting on retaining 
walls. 

Mechanism-1 (Single Block Failure) involves a single block with a straight-line failure surface passing through the 
heel of the retaining wall. Mechanism-2 (Two-Block Failure) comprises of two blocks in the active wedge, one triangular 
and another trapezoidal block. Lastly, Mechanism-3 (Three-Block Failure) includes three blocks – two trapezoidal blocks 
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and one triangular block. Each block is defined by slip planes inclined at specific angles relative to the horizontal. These 
angles are optimized by employing a multi-dimensional improved Nelder–Mead simplex routine to maximize active 
thrust. These mechanisms are depicted in Fig. 2. For cases where the rock face is sufficiently distant, such that b/h ≥ 0.7, 
the failure wedge forms a triangular shape. When the backfill width is reduced to 0.3 ≤ b/h ≤0.6, the failure mechanism 
evolves into two wedges: a triangle and a trapezoid. A further reduction in backfill width (b/h ≤ 0.3) results in three 
distinct wedges comprising a triangle and two trapezoids. 

 
Fig. 2: Three wedge failure mechanism as proposed by Ahmed and Basha (2021). 

 
2.3 Dataset Generation 

Data serves as the cornerstone of ML, with its quality, quantity, and relevance significantly influencing the success 
of predictive models. Ahmed and Basha (2021) conducted an extensive analytical investigation, offering mathematical 
formulations to create a robust database using advanced coding techniques.  A dataset comprising 12,006 data points is 
generated to facilitate the training of the various ML models. Table 1 provides a detailed statistical overview of the input 
parameters.  

Table 1. Statistical information of the input and output variables in the dataset 

 rϕ  β  ε  η  pδ  Pψ  rδ  rψ  b h  Ka 
Total data 
points 12006 12006 12006 12006 12006 12006 12006 12006 12006 12006 

Arithmetic 
mean 33.77 100.07 4.98 79.94 22.43 22.48 16.83 16.87 0.79 0.39 

Standard 
deviation 7.39 8.15 4.08 8.15 16.77 16.77 13.40 13.40 0.49 0.12 

Minimum 25.00 90.00 0.00 70.00 0.00 0.00 0.00 0.00 0.10 0.11 
Maximum 45.00 110.00 10.00 90.00 45.00 45.00 45.00 45.00 1.50 1.44 

 
To establish a baseline for predicting Ka, a traditional data-fitting technique is also employed. This approach involves 

fitting a non-linear model to the dataset generated using Datafit software, and the model's performance is evaluated using 
various statistical metrics. The model performance shows a very low explanatory power, as indicated by the coefficient 
of determination (R²) of 0.17% and the adjusted R² of 0.098%, suggesting that the model is unable to fit the data. The 
residual analysis reveals significant discrepancies between the predicted and observed values, with a sum of residuals of 
3,594,126 and an average residual of 297.6. The residual sum of squares, both absolute and relative, is extremely high 
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(5.05 × 10⁶³), further emphasizing the model’s poor fit. The standard error of the estimate is 2.05 × 10¹⁶, indicating large 
errors in predictions. Additionally, the proportion of variance explained is only 0.173%, which reinforces the limited 
predictive capability of the model. However, the Durbin-Watson statistic of 2.0026 suggests that there is no significant 
autocorrelation in the residuals, meaning the residuals are independent of each other. These results clearly demonstrate 
that the model is fundamentally flawed, offering no reliable predictions. The performance metrics are abysmal, indicating 
that the model fails miserably in capturing the underlying patterns in the data. It is evident that this model is unsuitable 
and needs to be completely discarded, as it does not provide any meaningful or accurate results. 
 
2.4 Support Vector Regression 

Vapnik (1995) introduced the support vector machines (SVM) technique, which serves as the foundation for the 
extension to SVR. This extension of SVMs caters specifically to regression (Guardiani et al. 2022). Importantly, SVM 
is designed for categorical target variables, whereas SVR is better suited for continuous target variables. It is worth noting 
that SVR is a non-parametric method due to its reliance on kernel functions. The SVR algorithm endeavors to identify a 
hyperplane that optimally accommodates the data points within a continuous space while minimizing prediction errors 
(identifying the narrowest tube) (Sethi, 2020). Mathematically, the regression function is defined as: 

( ) ( )T
aK bϖ= +x w x   

where,  
[ ], , , , , ,b h φ η β ε δ ψ=x              (1) 
The key components in the context of the above equation are the non-linear mapping function ϖ , the training set 

{(x1, (Ka)1), (x2, (Ka)2), … , (xm, (Ka)m)}, input features or the factors xi contributing to the output label or Ka, weight 
vector w, and offset from the hyperplane’s origin b are key components in the context of the equation. The determination 
of these parameters involves minimizing an objective function while adhering to specific constraints. The objective of 
these constraints is to restrict the discrepancy between the predicted output and the actual measured output within a 
predefined threshold valueν . In order to accommodate certain data points lying outside the ν -tube, a soft margin 
approach is employed, which introduces slack variables, ξ  (Guardiani et al. 2022). The convex objective function, can 
be expressed as follows (Bermolen 2009): 
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To ensure accurate fitting, a convex loss function is initially established. The primary objective is to minimize this 
function, thereby identifying the flattest tube that encompasses a significant portion of the training samples. The function 

( )aK x can also exhibit non-linearity, it is then possible to map the data into a higher-dimensional space known as the 
kernel space. Within this transformed space, all the data points can be effectively separated in a linear manner. In the 
case of nonlinear regression problems, the decision function from the dual problem can be expressed as follows [Lin et 
al., 2021]: 

 ( )*

1
( ) ( , )

m

a i i i
i

K k bα α
=

= − +∑x x x                (3) 

where, α , *α  are the Lagrange multiplier, k (x, xi) are the kernel function. The ML model is to be tuned for the 
best kernel function. The model parameters, such as the penalty parameter (c), kernel coefficient (γ ), and threshold (ν
), are optimized using a grid search with cross-validation to avoid overfitting and enhance generalizability. 
The dataset is divided into training and testing subsets, ensuring an 80:20 split. Five-fold cross-validation is employed 
during training to evaluate the model's performance and stability. Key metrics, including R2, mean squared error (MSE), 
and mean absolute error (MAE), are used to assess the model's predictive accuracy.  
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3. Results and Discussion 
3.1 Performance Evaluation 

The SVR model demonstrates exceptional predictive accuracy, with R2 values of 97.4%, 97.2%, and 96.5% for 
training, cross-validation, and testing phases, respectively. These metrics highlight the model's ability to maintain 
consistency and reliability across different data splits. Furthermore, the SVR model achieves a low MSE of 0.033 and an 
MAE of 0.065, underscoring its capacity to capture complex interactions between the input parameters and active earth 
pressure with precision. 

In stark contrast, the traditional data-fitting method exhibits a negligible R2 value, indicating an almost complete 
failure to explain the variance in the dataset. Additionally, the method's excessively high residuals, reveal significant 
inaccuracies and limitations. These results clearly highlight the inadequacy of the traditional data-fitting approach and 
emphasize the superiority of the SVR model as a robust and reliable predictive framework for constrained backfill 
retaining walls. 
 
3.2 Prediction of the active earth pressure coefficient using SVR 

The Ka values are calculated using MATLAB based on complicated formulations, as well as predicted through an 
SVR model trained on the generated dataset. The prediction accuracy of the SVR model is assessed by error metrics 
summarized in Table 2. The results demonstrate that the SVR model consistently provides highly accurate predictions 
of Ka, with an R2 value exceeding 95%, indicating a strong correlation between the predicted and actual values. The MAE 
highlights the average magnitude of prediction errors, showing that the discrepancies between the predicted and actual 
values are minimal. The low MSE, which penalizes larger deviations more heavily, confirms that significant errors are 
rare and that the model provides consistent accuracy across the dataset. 

 
Table 2: Standard metrics of SVR 

Metric Value 

R2 
Train 97.4% 
CV 97.2% 
Test 96.5% 

MAE 0.065 
MSE 0.033 

 
3.3 Comparison of Actual and Predicted Values 

Figure 3 presents the scatter plot of the actual versus predicted values of the Ka obtained using the SVR model. Each 
data point represents a pair of actual and predicted values. The 45° reference line in the plot corresponds to an ideal 
scenario where the predicted values perfectly match the actual ones. The data points in the scatter plot are closely aligned 
along this diagonal line, demonstrating that the SVR model provides highly accurate predictions. Minimal deviation from 
the line indicates that the model effectively captures the underlying trends in the dataset and predicts Ka values with high 
precision. 

Moreover, the alignment of points across the entire range of Ka values shows that the model performs consistently, 
regardless of the magnitude of Ka. This result highlights the robustness of the SVR model in predicting Ka  across diverse 
input conditions, as reflected in the high R2 value reported in Table 2. The performance of the SVR model can be 
attributed to its ability to model non-linear relationships between input parameters and Ka. This capability allows the 
model to generalize well, even for complex conditions, and ensures that predicted values remain close to their actual 
counterparts. 
 
3.4 Density Plot  

Figure 4 presents a density plot of the Ka values, complemented by an inset error histogram to provide a detailed 
understanding of the data distribution and prediction accuracy of the SVR model. The density plot highlights the 
distribution of Ka values across the dataset. The density plot highlights the distribution of Ka values across the dataset. A 
prominent peak is observed, indicating that a majority of the data points fall within a tolerable error range. The inset error 
histogram depicts the distribution of prediction errors, calculated as the difference between the actual and predicted Ka 
values. The histogram is centred around zero, signifying that the SVR model produces unbiased predictions with no 
systematic overestimation or underestimation of Ka. The symmetrical shape of the histogram indicates that the errors are 
evenly distributed, with most errors being small in magnitude. This observation is further supported by the low frequency 
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of errors in the tails, demonstrating that significant deviations are rare. Together, the density plot and the error histogram 
illustrate the SVR model's high accuracy and consistency in predicting Ka. The combination of these visualizations 
provides a comprehensive analysis of the model's performance, highlighting its capability to generalize effectively across 
diverse input conditions while maintaining minimal prediction errors. 
 

 
Fig. 3: Scatter plot comparing the actual and the predicted values of Ka using SVR model. 

 

 
Fig. 4: Density plot and the inset error histogram of SVR. 

 
 domain-based error validation is adopted in the current study. Fig. 5 depicts a significant decrease in the Ka as the 

aspect ratio (b/h) decreases from 0.7 to 0.1, across various friction angles. This reduction is attributed to the partial 
development of failure planes caused by the constraint imposed by the rock face boundary. Notably, for φ  = 42o and φ  
= 45o, the model predicts values that closely align with calculated values, indicating high accuracy, particularly at higher 
friction angles. Also, when b/h falls between 0.3 to 0.6, the model exhibits higher accuracy for all φ  values, with minimal 
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errors observed. However, at φ  = 28o, the predicted value of ka is 11% higher than the calculated value when the b/h 
ratio is 0.2. Similarly, for φ  = 32o and φ  = 36o, the observed errors between the predicted and calculated values of Ka 
are 10% and 7.7%, respectively at b/h = 0.2. It is essential to acknowledge that the inherent complexity involved in 
computations considering more mechanisms limits the availability of data points for lower aspect ratios (b/h < 0.3). This 
scarcity of data is manifested in the model's observed errors. Expanding the dataset by augmenting the number of data 
points for b/h ratios below 0.3 presents a viable approach to mitigate this limitation and enhance the model's accuracy. 
Moreover, at b/h = 1.0, the errors between predicted and calculated values of ka are 5% for φ  = 28o, 4.5% for φ  = 32o, 
and 4% for φ  = 36o. The findings suggest that the model effectively predicts Ka values across various aspect ratios and 
friction angles. However, they also emphasize the necessity for additional data generation, particularly for lower aspect 
ratios, to further improve the accuracy of the model. 
 

 
Fig. 5: Effect of φ  and b/h on Ka 

 
3.5 Practical Implications  

The enhanced predictive accuracy of the SVR model offers significant practical benefits for the design of CBRWs. 
By providing reliable predictions of active earth pressure, the model enables more precise and efficient structural designs, 
reducing the risk of overdesign or structural failure. This methodological advancement underscores the potential of 
machine learning to transform geotechnical engineering practices, particularly for complex applications like CBRWs, 
where traditional methods fall short. 
 
4 Conclusions 

This study aims to develop an ML model for estimating the Ka or constrained backfill width retaining walls operating 
under translation mode. A dataset of 12,006 Ka values is generated through limit equilibrium analysis of CBRWs. This 
study demonstrates the superior predictive capability of the SVR model in estimating active earth pressure for CBRWs. 
With R2 values of 97.4%, 97.2%, and 96.5% for training, cross-validation, and testing datasets, the SVR model 
consistently outperforms traditional data-fitting techniques, which fail to provide meaningful results (R2 = 0.17%). The 
SVR model also exhibits minimal prediction error, as reflected by MSE of 0.033 and a mean absolute error of 0.065. In 
contrast, traditional methods are shown to be unsuitable for handling the complexities of narrow backfill geometries and 
boundary constraints. The errors between predicted and calculated values of Ka are 11% for φ  = 28o, 10% for φ  = 32o, 
and 7.7% for φ  = 36o when the b/h ratio is 0.2. Moreover, at b/h = 1.0, the errors are 5% for φ  = 28o, 4.5% for φ  = 32o, 
and 4% for φ  = 36o. 
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