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Abstract - Slope stability analysis that accounts for spatial variability of soil properties is computationally intensive. This study presents 
a hybrid approach integrating the Random Finite Element Method (RFEM) with Convolutional Neural Networks (CNN) and data 
augmentation to address this challenge. Using random field theory, random field samples for soil cohesion and friction angle are 
generated, for which RFEM is used to calculate the factor of safety. A data augmentation technique was applied to expand the RFEM 
dataset, generating up to 10,000 training samples from 200 initial simulations, significantly enhancing model performance. The CNN 
model, trained on this augmented dataset with a magnification factor of 50, achieved an R-squared value of 0.82 on cross-validation, 
demonstrating high accuracy. This approach drastically reduces computational time, with 200 RFEM simulations requiring about 10 
hours while enabling the CNN to perform 10,000 stochastic analyses in mere minutes. The hybrid RFEM-CNN model was applied to a 
typical 𝑐𝑐-𝜙𝜙 slope and predicted a probability of failure of 0.12%, closely aligning with reliability estimates from established finite 
difference methods and avoiding overestimations common in limit equilibrium methods. The findings highlight the model’s potential as 
an efficient and robust tool for slope reliability studies, reducing computational costs while maintaining high prediction accuracy. 
 
Keywords: Convolutional Neural Network, Probabilistic slope stability, Spatial variability, Stochastic analysis, Random Finite Element 
Method 
 
1. Introduction 

The variability of natural soil properties is a major cause of uncertainty in soil engineering [1]. Traditional slope stability 
analyses often ignore this variability, leading to inaccurate results. Probabilistic slope stability analyses using random field 
theory and the random finite-element method (RFEM) have become popular [1], [2], [3]. RFEM involves generating random 
fields for soil properties and mapping them to a numerical mesh, requiring many simulations for reliable results. Monte Carlo 
Simulation (MCS) is often used but is inefficient for low probability failure scenarios [2].  

Alternative methods for reliability calculations include the first-order reliability method, response surface methods [4], 
subset simulation, etc. aiming to reduce the computational effort. Machine-learning algorithms, particularly Convolutional 
Neural Networks (CNNs), have shown promise in handling high-dimensional data and complex problems in geotechnical 
engineering [2], [5]. While CNNs benefit from more training data, generating these data using traditional sampling methods 
like MCS can be computationally expensive. Additionally, complex CNN architectures may not always improve accuracy 
and can be difficult to implement. 

This paper proposes enhancing CNN performance in probabilistic slope stability analysis using a data-centric approach. 
A small initial dataset of spatially varying random field sample data of cohesion (𝑐𝑐) and angle of internal friction (𝜙𝜙) is 
generated and analyzed to obtain factors of safety using RFEM. A supplementary sampling data augmentation technique 
based on theoretical relationships in the shear strength reduction method is then used to expand the initial dataset without 
incurring external computational cost. This augmented dataset is used to train the CNN model. The RFEM-CNN model is 
validated with a 𝑐𝑐-𝜙𝜙 soil slope and the trained CNN model is utilized to carry out MCS on random field to calculate 
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probability of failure of the slope. Results show improved accuracy and efficiency, especially for low probability failure 
scenarios, compared to conventional methods.  

 
2. Random Finite Element Method 
2.1. Modeling Spatial Variability 

To model the spatial variability of soil properties, random field theory and the Gaussian autocorrelation function is 
utilized. The Gaussian autocorrelation function provides a smooth and continuous representation, which is 
mathematically expressed in Eq. (1). 

𝜌𝜌[(𝑥𝑥1,𝑦𝑦1), (𝑥𝑥2,𝑦𝑦2)] = 𝑒𝑒𝑥𝑥𝑒𝑒 �−𝜋𝜋 �|𝑥𝑥1−𝑥𝑥2|2

𝛿𝛿ℎ
2 + |𝑦𝑦1−𝑦𝑦2|2

𝛿𝛿𝑣𝑣2
��  (1) 

where (𝑥𝑥1,𝑦𝑦1) and (𝑥𝑥2,𝑦𝑦2) denotes the coordinates of any 2 points in the spatial domain; δ2 and δℎ are the vertical 
and horizontal scales of fluctuation, respectively. 

This function defines the spatial relationship between points based on their scaled distances, capturing the horizontal 
and vertical fluctuation scales [5]. For each iteration, a distance matrix is generated, and the Gaussian autocorrelation 
function is used to form the autocorrelation matrices for the varying parameters: cohesion (𝑐𝑐) and angle of internal 
friction (𝜙𝜙). The variability of 𝑐𝑐-𝜙𝜙 are assumed to be lognormally distributed, specified based on their mean and 
coefficient of variation (CoV). The cross-correlation between these properties is incorporated to form a comprehensive 
covariance matrix, which is then regularized slightly to ensure numerical stability. 

For spatial variability modeling, initially the spatial domain of the slope is discretized into clusters in proportion 
with the scale of fluctuation. Based on the coordinates of these soil clusters, random fields are generated. The variability 
is quantified based on the corresponding mean and CoV values for 𝑐𝑐 and 𝜙𝜙 parameters, assuming a lognormal 
distribution. Cholesky decomposition is then performed on the covariance matrix to produce a lower triangular matrix. 
This matrix is used to transform uncorrelated standard normal random variables into correlated variables that reflect the 
spatial variability and cross-correlation of the soil properties. These correlated random variables are subsequently 
converted to lognormal values using the previously calculated mean and variance parameters. The generated random 
field realizations for cohesion and friction angle are saved iteratively, providing a comprehensive dataset for 
geotechnical reliability analysis. This methodology ensures accurate and efficient modeling of spatially variable soil 
properties, crucial for probabilistic slope stability analyses. 
 
2.2. Slope Stability Analysis 

The Strength Reduction Method (SRM), also known as 𝑐𝑐-𝜙𝜙 reduction, is a widely adopted technique in slope 
stability analysis, frequently employed using Finite Element Method (FEM) software like PLAXIS 2D. This method 
systematically reduces the soil strength parameters (cohesion, 𝑐𝑐 and internal friction angle, 𝜙𝜙) until the slope reaches a 
failure state, thus determining the factor of safety, FoS. In the 𝑐𝑐-𝜙𝜙 reduction approach, the total multiplier ∑𝑀𝑀𝑠𝑠𝑠𝑠 is used 
to define the value of the soil strength parameters at any given stage in the analysis. The relationship between the reduced 
and initial strength parameters is given in Eq. (2). 

∑𝑀𝑀𝑠𝑠𝑠𝑠 = 𝑡𝑡𝑡𝑡𝑡𝑡𝜙𝜙input
𝑡𝑡𝑡𝑡𝑡𝑡𝜙𝜙reduced

= 𝑐𝑐input
𝑐𝑐reduced

       (2) 
Here, 𝜙𝜙input and 𝑐𝑐input are the initial input values of friction angle and cohesion, respectively, and 𝜙𝜙reduced and 

𝑐𝑐reduced are their reduced values. The incremental multiplier 𝑀𝑀𝑠𝑠𝑠𝑠 is specified to control the stepwise reduction in 
strength, typically starting with a value of 0.1. This reduction continues until a fully developed failure mechanism is 
observed, ensuring convergence in the calculations [6]. The factor of safety, FoS is determined by the Eq. (3) once failure 
occurs. 

FoS = available strength
strength at failure = value of ∑𝑀𝑀𝑠𝑠𝑠𝑠 at failure     (3) 

The 𝑐𝑐-𝜙𝜙 reduction method in PLAXIS 2D employs a step-by-step procedure, where the soil strength parameters are 
reduced automatically until the model reaches failure. If failure is not fully developed, the process is repeated with a 
larger number of steps. 
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2. Machine Learning Integration 
2.1. Data Augmentation 

In order to use machine learning for predicting factor of safety, numerous model evaluations are required to achieve 
reliable training database. To overcome this challenge, a data augmentation technique was proposed, with its mathematical 
basis derived from the Strength Reduction Method (SRM) equation (Eq. 2). This theoretical relationship between FoS and 
shear strength parameters is expressed in Eq. (4), as proposed by [5], [7]. 

𝑡𝑡𝑡𝑡𝑡𝑡 𝜙𝜙𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖⋅𝑡𝑡𝑡𝑡𝑡𝑡𝜙𝜙
FoS ,  𝑐𝑐𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖⋅𝑐𝑐

FoS      (4) 
where 𝑐𝑐𝑖𝑖 and 𝜙𝜙𝑖𝑖  represent the reduced friction angle and cohesion for a specified intermediate FoS, 𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖. This technique 
allows for the generation of additional random field realizations of soil properties without performing further numerical 
calculations, thereby significantly reducing computational effort. Using this SRM relationship, it is possible to compute the 
random field of material property corresponding to any factor of safety 𝐹𝐹𝑀𝑀𝑀𝑀, based on the RFEM factor of safety 𝐹𝐹0 calculated 
for a specific realization of the random fields of shear strength properties. In particular, for a random field realization 𝑥𝑥0 =
𝑟𝑟(𝑥𝑥01,𝑥𝑥02, … , 𝑥𝑥0𝐷𝐷)𝑇𝑇 , where 𝐷𝐷 denotes number of varying input parameters, and calculated RFEM factor of safety 𝐹𝐹0, the new 
random field sample, 𝑥𝑥𝑀𝑀𝑀𝑀 corresponding to a given factor of safety 𝐹𝐹𝑀𝑀𝑀𝑀, where 𝑥𝑥𝑀𝑀𝑀𝑀 = 𝑟𝑟(𝑥𝑥𝑀𝑀𝑀𝑀1 , 𝑥𝑥𝑀𝑀𝑀𝑀2 , … , 𝑥𝑥𝑀𝑀𝑀𝑀𝐷𝐷 )𝑇𝑇 is calculated 
from Eq. (5). 

𝑥𝑥𝑀𝑀𝑀𝑀1 = 𝐹𝐹𝑀𝑀𝑀𝑀𝑥𝑥01

𝐹𝐹0
,  𝑥𝑥𝑀𝑀𝑀𝑀2 = 𝐹𝐹𝑀𝑀𝑀𝑀𝑥𝑥02

𝐹𝐹0
, … ,  𝑥𝑥𝑀𝑀𝑀𝑀𝐷𝐷 = 𝐹𝐹𝑀𝑀𝑀𝑀𝑥𝑥0𝐷𝐷

𝐹𝐹0
     (5) 

where, 𝑥𝑥0 and 𝑥𝑥𝑀𝑀𝑀𝑀 can be replaced with 𝑡𝑡𝑡𝑡𝑡𝑡𝜙𝜙0 or 𝑐𝑐0 and 𝑡𝑡𝑡𝑡𝑡𝑡 𝜙𝜙𝑀𝑀𝑀𝑀 or 𝑐𝑐𝑀𝑀𝑀𝑀, corresponding to the shear parameter for which 
the additional random fields are generated. This technique allows generating multiple random fields from a single initial 
sample. For instance, if 𝑀𝑀𝑀𝑀 = 10, to obtain 10 additional random fields corresponding to 𝐹𝐹𝑀𝑀𝑀𝑀 = 0.5, 0.75, …, 2.75. By 
applying these relationships iteratively, a diverse set of random field realizations can be generated for different factors of 
safety. This supplementary sampling technique, based on equations 5 and 6, significantly expands the dataset available for 
training machine learning models, such as Convolutional Neural Networks (CNNs), used in geotechnical reliability analysis. 
The resulting larger dataset improves the robustness and accuracy of predictive models without the need for extensive 
additional numerical simulations [3], [5]. 

 
2.3. Convolutional Neural Network 

Convolutional Neural Networks (CNNs) are deep-learning network architecture to process and interpret high-
dimensional data using operations like convolution and pooling. A typical CNN architecture includes layers such as input, 
convolutional, pooling, activation, fully connected, and output layers (Jiang et al. 2023). CNNs handle high-dimensional 
data using kernels, parameter-sharing, and pooling, which reduce the number of learnable parameters and prevent overfitting.  

This study utilized the CNN toolbox available in Python's TensorFlow library. The CNN input layer configuration for 
handling random fields differs from conventional configurations used for digital images. Instead of images and channel, a 
3D NumPy array was used. In finite-element analyses, material parameter values are assigned to discretized spatial domain 
with x y coordinates based on the specified scale factor. For CNNs processing random fields, element in the spatial domain 
is represented as an element of a 2D array, and the spatially variable soil parameters included within the 2D array. A soil 
layer with varying friction angle (𝜙𝜙) and cohesion (𝑐𝑐) involves two such 2D arrays representing each random field. These 
fields are combined into a 3D NumPy array, with each layer in the array corresponding to a 2D representation of the random 
fields of 𝜙𝜙 and 𝑐𝑐. 

The specific CNN architecture used in this study starts with a convolutional layer of 32 filters (3x3) with ReLU 
activation, capturing spatial patterns in the input data. This is followed by a 2x2 MaxPooling layer to reduce spatial 
dimensions. Three additional convolutional layers with 64, 128, and 64 filters, all using ReLU, further refine features. The 
output is flattened into a single vector for the fully connected layers. The first fully connected layer has 64 neurons with 
ReLU activation, and the final output layer has one neuron for slope stability predictions. The Adam optimizer is used for 
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training, and the model's performance is evaluated using the R² score. This CNN effectively handles high-dimensional 
data for geotechnical reliability calculations, providing a robust approach to slope stability analysis. 

 
2.3. Implementation 

Figure 1 outlines the implementation procedure. The initial step involves gathering relevant geotechnical data, such 
soil properties and site-specific conditions, followed by a thorough statistical analysis to understand the variability and 
distribution of these properties. Using the specified mean, CoV and correlation functions, spatially correlated sample 
arrays representing the variability in the soil properties are generated. These sample arrays form the basis for the initial 
dataset, with a sample size denoted as 𝑖𝑖. Once the initial dataset is generated, random finite element method (RFEM) 
analysis is conducted based on these spatially correlated domains. The python remote scripting in PLAXIS 2D is utilized 
to iteratively assign the spatially varying material property from the initial dataset to assess the stability of the slope. 
The calculated factor of safety, FoS values from the RFEM analyses are saved with the corresponding input files to form 
the initial input dataset for data augmentation. Subsequently, supplementary sample points are generated by applying a 
magnification factor (𝑀𝑀𝑀𝑀) to the initial dataset. This step aims to expand the dataset, capturing more intricate patterns 
and enhancing the robustness of the analysis. 

 
Fig. 1: Layout of proposed Methodology. 

 
The expanded dataset is then used to train a Convolutional Neural Network (CNN) model to predict the FoS for 

different soil conditions. The CNN model leverages the enhanced dataset to learn and predict the stability of the slope 
with high accuracy. An iterative Monte Carlo Simulation (MCS) step is explicitly incorporated, where the pre-trained 
CNN model is used to predict the FoS for numerous scenarios, and the failure probability is calculated. The iterative 
MCS step ensures a comprehensive probabilistic analysis, which is validated against existing probabilistic slope models 
to ensure accuracy and reliability. This methodology combines advanced data augmentation techniques with machine 
learning and probabilistic analysis to provide a robust framework for slope stability assessment. 

 
2. Results and Discussion 
2.1. Slope Geometry 

To demonstrate the effectiveness of the proposed methodology, which combines data augmentation and CNN-based 
reliability analysis, we use a 𝑐𝑐-𝜙𝜙 soil slope example. This example has been previously studied by several researchers 
[4], [5], [8], [9], [10]. The slope features a height of 10 meters and an inclination of 45°. To reduce boundary effects, 
the right boundary extends 10 meters beyond the slope toe, and the left boundary extends 10 meters beyond the slope 
crest, with the bottom boundary located 5 meters below the slope toe. Figure 2 illustrates the dimensions and geometry 
of the modeled 𝑐𝑐-𝜙𝜙 slope. The model is composed of 1,210 clusters, each containing one to two 15-noded triangular 
elements, with a cluster length of 0.5 meters. The deterministic FEM model is compared with a deterministic FDM 
analysis from [5] by calculating the factor of safety for a homogeneous soil layer with the properties listed in Table 1. 



 
 

 
 

 
 

 
ICGRE 175-5 

 
Fig. 2: Slope Geometry and dimensions 

 
Table 1: Input Properties of RFEM model and FoS values of homogeneous case 

 
Parameters                                 Value                                            
 Elastic Young’s modulus                     100 MPa                                          
 Poisson’s ratio                             0.3 
 Unit weight                                 20 kN/m³                                         
 Mean angle of internal friction                         30°                                              
 Mean cohesion                               10 kPa                                           
 CoV of angle of internal friction       0.2 
 CoV of cohesion  0.3 
 Cross-correlation coefficient    -0.7 
Factor of safety for homogeneous case 
(Current study: using FEM) 

1.216 

Factor of safety for homogeneous case  
using FDM [5] 

1.219 

 
2.4. Dataset and Training 

To develop a robust CNN model, a systematic approach was employed, focusing on two key parameters: the sample 
size of initial datasets (𝑖𝑖) and the magnification factor (𝑀𝑀𝑀𝑀) applied to each of these datasets. The initial dataset includes the 
spatially varying material properties saved in the form of 3D NumPy arrays. Figure 3 shows the visualization of a typical 
realization of the spatially varied material properties in each layer of this 3D array. This methodology could achieve an R-
squared value exceeding 0.975, a benchmark based on previous modeling efforts. 

Firstly, the sample size of initial datasets (𝑖𝑖) was varied from 60 to 150. This dataset is subjected to the data augmentation 
based on supplementary sampling. Different magnification factors (𝑀𝑀𝑀𝑀) are applied to each of the initial datasets to 
understand the minimum sample size required for effective training of CNN. The magnification factor controls the 
amplification of input and output data extracted from the initial datasets, enabling the model to capture intricate patterns and 
nuances within the data. 
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Fig. 3: Spatially varying material property for a typical realization 

 
By systematically varying the sample size of the initial dataset across 3 different values of 𝑀𝑀𝑀𝑀: 10, 30 and 50, 

different combinations of training datasets were generated. Each combination represented a unique configuration of the 
augmented data, characterized by specific values of 𝑖𝑖 and 𝑀𝑀𝑀𝑀. Subsequently, the performance of each configuration was 
evaluated using rigorous validation techniques, such as cross-validation or holdout validation, to ensure robustness and 
generalization. The primary metric for evaluation was the R-squared value, which quantifies the proportion of variance 
explained by the model. 

 
Fig. 4: Variation of R-squared value with different configuration of dataset 

 
Through iterative experimentation and fine-tuning, the combination of parameters that yielded an R-squared value 

exceeding 0.975 on testing the training dataset, surpassing the performance achieved in previous studies [5], [8], [9]. 
Figure 4 shows the variation in R-squared value for different combination of training datasets. It is clear than a minimum 
of augmented sample size of 4500 was required, with at least a magnification of 30 across a minimum initial dataset 
sample size of 130. This evaluation ensured the development of a robust CNN model capable of accurately capturing 
the underlying patterns in the dataset. 

 
2.4. Cross-Validation 

The developed RFEM-CNN hybrid models with different training set were subjected to cross-validation with RFEM 
results. Figure 5 shows the variation in R-squared value with respective the sample size configuration used for training 
the CNN models. It is observed that the accuracy increases with increase in sample size, which is expected. A minimum 
of 7500 sample size for training with a maximum magnification factor of 50 is suggested to have an R-squared value 
above 0.8, shown in Fig. 5. 

Based on the findings, a new RFEM-CNN model is developed for the 𝑐𝑐-𝜙𝜙 slope with an initial dataset of 200 sample 
size magnified by a value of 50. Thus, the model was trained and validated with 10,000 datasets. Upon cross-validation, 
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the model estimated an R-squared value of 0.82. Further, the trained RFEM-CNN model is utilized to predict the probability 
of failure using MCS of 10,000 simulations. Table 2 lists the probability of failure estimated from different reliability 
methods from previous studies. The developed hybrid model predicted a probability of failure of 0.12% which is comparable 
with other reliability methods using Finite Difference Methods and CNN [5], and does not overestimate the failure probability 
when compared with Limit Equilibrium Methods [9]. 

Fig. 5: Cross-Validation R-squared value with different configuration of dataset 
 

Table 2: Comparison of probability of failure with previous studies 
 

Simulation method Slope stability analysis Sample size Failure probability 
MCS [8] Simplified Bishop method 50,000 3.9 × 10-3 

Latin-Hypercube Sampling (LHS) [9] Simplified Bishop method 10,000 4.4 × 10-3 
MCS + Response Surfaces [9] Simplified Bishop method 1,000 4.9 × 10-3 
Latin-Hypercube Sampling [5] FDM 10,000 1.8 × 10-3 
LHS-CNN (6,400 training data) [5] FDM 400 1.01 × 10-3 
MCS-CNN (200x50 initial sample) [current study] FEM 10,000 1.21 × 10-3 

 
4. Conclusion 

In summary, the proposed data augmentation technique significantly enhances CNN-based surrogate models for 
geotechnical reliability calculations, offering a practical and efficient solution for handling high-dimensional random fields 
and multiple uncertainties. Limiting the number of RFEM simulations eliminates the high expense of computational power 
required in providing a thorough statistical analysis of safety factors with comparable accuracy as traditional RFEM 
simulation benchmarks. The methodology is validated on a typical 𝑐𝑐-𝜙𝜙 soil slope to study the performance in predicting 
lower value of probability of failure. The results indicate that conducting 200 RFEM simulations during the preliminary 
phase, which takes approximately 10 hours on a system equipped with a Ryzen 5 hexa-core processor clocked at 4 GHz and 
8 GB of memory, is sufficient to adequately train the CNN model. This trained model can then predict the probability of 
slope failure with commendable accuracy. Additionally, an extensive Monte Carlo Simulation (MCS) can be carried out on 
𝑐𝑐-𝜙𝜙random fields explicitly using the pre-trained CNN model to calculate probability of failure of the slope. For instance, 
the trained model can execute 10,000 stochastic analyses within a few minutes. This rapid analysis capability is crucial for 
achieving a complete statistical description of the factor of safety, which demand a high volume of runs. In contrast, 
traditional stochastic FEM studies, necessitating such a large number of simulations, would typically span hundreds of days, 
underscoring the significant time-saving advantage of the present methodology. 
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