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Abstract - Steel-concrete composite structures depend on headed shear studs for effective load transfer and composite action. Current 
design codes, such as EN 1994-1-1 and AISC 360-16, provide empirical formulas to estimate stud shear resistance. However, these codes 
often fail to account for failure mechanisms in modern profiled steel sheeting, resulting in unreliable predictions. This study evaluates 
the limitations of both codes using 611 push-out tests, revealing insufficient safety factors—1.09 for EN provisions and 0.83 for AISC, 
both below the target of 1.25. To address these shortcomings, a machine learning-based approach was developed. Key preprocessing 
steps included outlier removal, feature scaling, and selection of critical features using XGBoost. Four models—XGBoost, LightGBM, 
Random Forest, and Decision Tree—were evaluated, with Random Forest achieving superior performance (R² = 0.9149, RMSE = 6.87, 
APE = 9.38%), outperforming traditional codes. A hybrid approach was devised by incorporating a safety factor of 1.25 into machine 
learning predictions. Adjusted predictions closely aligned with experimental results, yielding an average ratio of 1.24 and a robust R² of 
0.93. Standard deviation comparisons highlighted a reduction of over 73% compared to EN provisions and 59% relative to AISC, ensuring 
improved reliability. The proposed methodology bridges the gap between empirical limitations and real-world behavior, providing a 
precise, data-driven tool for shear resistance estimation. By integrating machine learning, this approach enhances safety, precision, and 
applicability in structural design, addressing critical challenges in modern composite construction. 
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1. Introduction 

Steel structures are essential in modern construction due to their strength, versatility, and adaptability. Combining steel 
and concrete in composite systems enhances performance by utilizing the strengths of both materials. Headed shear studs, 
welded to steel beams and embedded in concrete, transfer shear forces at the steel-concrete interface, enabling effective 
composite action. This improves stiffness, strength, and ductility while reducing deflections and material costs. 

In profiled steel sheeting, studs are typically placed through the troughs, penetrating the concrete slab above. The 
sheeting provides additional shear resistance and supports wet concrete during casting. Factors influencing stud effectiveness 
include stud height, concrete and steel strengths, and sheeting geometry. 

Current design codes, such as EN 1994-1-1 [1] and AISC 360-16 [2], face challenges in predicting shear resistance for 
headed studs in modern profiled steel sheeting. EN 1994-1-1, based on only 57 push-out tests, often overestimates resistance, 
especially for open-trough profiles. AISC 360-16 inadequately addresses concrete failure mechanisms and newer rib 
geometries. Both codes struggle with slender rib profiles, leading to inconsistent resistance predictions and failing to meet 
mandated safety factors. 

To address these challenges, advancements such as the Luxembourg and Stuttgart models and machine learning (ML) 
approaches have emerged [3]. The Luxembourg model refines EN 1994-1-1 equations by incorporating additional parameters 
like rib width, embedment depth, and concrete tensile strength, achieving safety factors between 1.21 and 1.28. The Stuttgart 
model introduces entirely new equations that account for weld collar dimensions and decking geometry, delivering safety 
factors around 1.47 with improved accuracy for complex geometries. 

Machine learning models, such as the one by Degtyarev and Hicks [4], enhance predictive accuracy using large datasets 
and advanced algorithms. Trained on 452 push-out tests with 24 variables, including stud diameter, concrete strength, and 
rib dimensions, their model achieved an R² of 0.95 and RMSE of 12.20 kN. However, challenges like overfitting, variable 
redundancy, and underrepresented configurations limit generalizability. 
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This study addresses the gap by applying machine learning to a larger dataset with fewer, carefully selected 
variables. By reducing complexity and focusing on critical predictors, it aims to develop a more practical and accurate 
tool for shear resistance estimation in steel-concrete composite structures. 

 
2. Methodology 
2.1. Dataset Description 

The dataset analyzed in this study includes 611 push-out test results on headed stud shear connectors in steel-
concrete composite systems, compiled by Vigneri et al [3].  from various experimental investigations. It captures key 
geometric and material parameters such as stud diameter (19–22 mm), welded stud length (70–200 mm), sheeting 
thickness (0.6–1.2 mm), and rib depth (40–136 mm). Material properties include concrete compressive strength (24–
58.1 MPa) and stud tensile strength (417–570 MPa). The dataset also considers the number of studs per rib (up to two) 
and their positions within the ribs (centered, staggered, or offset), which influence load distribution and resistance. 
Lightweight concrete was excluded, and a minimum concrete strength threshold ensured comparability across tests. 
Table 1 summarizes the variables, their units, and ranges. 

 
Table 1: Dataset Description 

Symbol Name of Variable Unit Min Value Max Value 

nr Number of studs per rib count 1 3 

Pos. Position of the stud in the trough N/A N/A N/A 

Welding Type of welding procedure N/A N/A N/A 

et Transversal spacing of the studs in the trough mm 0 191 

eL Longitudinal eccentricity of the stud in the trough mm -52.75 52.75 

dnom Nominal diameter of the shank of the stud mm 10 22 

hscm Mean (measured) height of the stud after welding mm 70 200 

t Nominal thickness of the sheeting mm 0.6 1.29 

Sheeting Steel deck product name N/A N/A N/A 

hp Nominal (net) height of the trough mm 38.1 152.4 

btop Nominal top width of the trough mm 63.5 240 

bbot Nominal bottom width of the trough mm 40 200 

fcm Mean value of concrete cylinder compressive strength MPa 17.82 52 

fum Mean ultimate tensile strength of the stud material MPa 417 570 

TL Transversal load N N/A N/A 

Pe Experimental resistance per connector kN 18.02 144.2 
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2.2. Current Code Provisions 
2.2.1. EN 1994-1-1 

The EN 1994-1-1 code determines the shear resistance of headed stud connectors in steel-concrete composite beams by 
by evaluating two failure modes—steel failure and concrete-related failure—and using the lesser value for design (CEN, 
2004). Steel failure resistance depends on the stud material's ultimate tensile strength (fu), stud shank diameter (d), and a 
a reduction factor (kt), which accounts for the geometry of profiled sheeting and stud arrangement. The reduction factor kt 
considers parameters like the number of studs per rib (nr), rib base width (b0), sheeting rib height (hp), and welded stud 
height (hsc). Concrete-related failure resistance depends on the concrete's compressive strength (fc), modulus of elasticity 
(Ec), stud diameter (d), and a factor (α) reflecting the embedment depth-to-diameter ratio (hsc/d). This factor adjusts 
resistance based on embedment depth, as greater depth improves concrete shear resistance. The code sets upper limits for kt 
to prevent overestimations [1]. The equations below outline these methodologies. 

 
                                                                         𝑟𝑟𝑡𝑡 = min�𝑟𝑟𝑡𝑡,𝑠𝑠 , 𝑟𝑟𝑡𝑡,𝑐𝑐�                                                                                            (1) 

                                                𝑟𝑟𝑡𝑡,𝑠𝑠 = 0.80 ∙ 𝑘𝑘𝑡𝑡 ∙ 𝑓𝑓𝑢𝑢𝜋𝜋
𝑑𝑑2

4
 , 𝑟𝑟𝑡𝑡,𝑐𝑐 = 0.29 ∙ 𝑘𝑘𝑡𝑡 ∙ 𝑑𝑑2𝛼𝛼�𝑓𝑓𝑐𝑐𝐸𝐸𝐶𝐶                                                  (2)  
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Table 2: Cases of EN 1994-1-1 Code 
kt,max Thickness of 

the sheeting t 
Studs not exceeding 20 
mm in diameter and 
welded through profiled 
steel sheeting 

Case 

Profiled sheeting 
with holes and studs 
19mm or 22mm in 
diameter 

Case 

nr = 1 t <= 1mm 0.85 A 0.75 C 
t > 1mm 1.0 B 0.75 D 

nr = 2 t <= 1mm 0.70 E 0.60 G 
t > 1mm 0.80 F 0.60 H 

 
 

Figure 1. Cross Section of a Headed Stud Connection in Steel-Concrete Composite in EN 1994-1-1 

 
2.2.1. AISC 360-16 

 The AISC 360-16 provisions for headed stud connectors in steel-concrete composite structures determine shear 
resistance as the lesser capacity between two failure modes: steel failure and concrete-related failure (AISC, 2016). Steel 
failure resistance is based on the stud's ultimate tensile strength (fu), diameter (d), and reduction factors Rg and Rp. Rg 
accounts for the number of studs per rib (1.0 for one stud, 0.85 for two), while Rp adjusts for stud position within the rib 
(0.75 for embedment ≥50 mm, 0.6 for less favourable positions). Concrete-related failure resistance depends on the concrete 
compressive strength (fc), elastic modulus (Ec), and stud diameter. Unlike EN 1994-1-1, AISC 360-16 uses a simplified 
approach without additional embedment geometry factors [2]. The equations below outline the methodology. 
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                                                                     𝑟𝑟𝑡𝑡 = min�𝑟𝑟𝑡𝑡,𝑠𝑠 , 𝑟𝑟𝑡𝑡,𝑐𝑐�                                                                                       (4) 

                                    𝑟𝑟𝑡𝑡,𝑠𝑠 = 1.00 ∙ 𝑅𝑅𝑅𝑅 ∙  𝑅𝑅𝑅𝑅 ∙ 𝑓𝑓𝑢𝑢𝜋𝜋
𝑑𝑑2

4
 , 𝑟𝑟𝑡𝑡,𝑐𝑐 = 0.5 ∙ 𝜋𝜋 𝑑𝑑2

4 �𝑓𝑓𝑐𝑐𝐸𝐸𝐶𝐶                                                                          (5) 

                       𝑅𝑅𝑅𝑅 =  �
1.0          𝑓𝑓𝑓𝑓𝑟𝑟 𝑛𝑛𝑟𝑟 = 1
0.85         𝑓𝑓𝑓𝑓𝑟𝑟 𝑛𝑛𝑟𝑟 = 2  ,  𝑅𝑅𝑅𝑅 =  �0.75          𝑓𝑓𝑓𝑓𝑟𝑟 𝑒𝑒𝑚𝑚𝑚𝑚𝑑𝑑−ℎ𝑡𝑡 ≥ 50𝑚𝑚𝑚𝑚 

0.6                                𝑓𝑓𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 
                                         (6) 

Table 3: Cases of AISC 360-16 Code 

 Rg = 1 Rg = 0.85 
Rp = 0.75 W Y 
Rp = 0.6 X Z 

 

 

Figure 2. Cross Section of a Headed Stud Connection in Steel-Concrete Composite in AISC 360-16 

 
2.3. Machine Learning 
2.2.2. Machine Learning 

The methodology begins with implementing basic machine learning models, including Decision Tree, Random 
Forest, and Linear Regression, in default settings to explore the dataset, identify patterns, and diagnose issues such as 
overfitting, underfitting, or feature significance. Insights from this step guide data refinement and model development. 

Data preparation ensures dataset quality and reliability. Invalid or non-numeric values are removed, irrelevant 
features are discarded, and categorical variables are encoded using binary, ordinal, or one-hot methods. Numerical 
features are normalized with standard or Min-Max scaling to ensure consistency, while logarithmic and square root 
transformations address skewness and outliers. Statistical methods are applied to detect and remove outliers in the target 
variable [5]. Gradient boosting algorithms rank feature importance, identifying key predictors for advanced modeling. 

The refined dataset is used to train and optimize advanced models, including XGBoost, LightGBM, and Random 
Forest, as well as simpler models like Decision Tree [6]. Hyperparameter tuning systematically enhances model 
performance. Effectiveness is assessed using Root Mean Square Error (RMSE), which quantifies prediction error (lower 
values indicate better performance), and R², which measures the proportion of variance explained by the model (values 
closer to 1 indicate a stronger fit). Together, these metrics provide a comprehensive evaluation of accuracy and 
robustness. 
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3. Results and Discussion 
3.1. Applying Current Code Provisions 

This study evaluates the accuracy and reliability of EN 1994-1-1 (Eurocode) and AISC 360-16 in predicting stud shear 
resistance by comparing theoretical predictions with experimental results from a dataset of 611 push-out tests. Both codes 
aim to achieve safety factors between 1.25 and 1.50 to balance structural safety with efficiency, accounting for uncertainties 
in material properties, construction tolerances, and load assumptions. 

The Eurocode frequently overestimates shear resistance, especially for open-trough profiles, creating a risk of non-
conservative designs where actual stud capacity is lower than predicted. A scatter plot of experimental versus theoretical 
values highlights significant discrepancies and variability in predictions. Specific cases, such as Case 0 and Cases C and D, 
exhibit substantial inaccuracies, as indicated in Figure 3. These deviations suggest limitations in the code's representation of 
critical parameters. The average safety factor for the Eurocode across all cases is 1.09, significantly below the target value 
of 1.25. Boxplot analysis Figure 3 further reveals high variability in predictions, particularly in configurations where the 
code fails to provide reliable resistance estimates. 

 

 
Figure 3. Scatter Plot of the Dataset Factor if Safety for both EN 1994-1-1 and AISC 360-16 Codes 

 
Similar trends are observed with the AISC 360-16 code, which also overestimates stud resistance compared to 

experimental results. The scatter plot in Fig. 8 illustrates consistent overestimation, raising concerns about the reliability of 
its predictions under specific conditions. Analysis of all cases Figure 4 confirms significant inaccuracies, with none of the 
cases achieving the required safety factor. The average safety factor for the AISC code is 0.83, far below the target of 1.25, 
and inadequate even to match experimental results. Boxplot analysis Figure 4 highlights the high variability in predictions, 
emphasizing the code’s inability to ensure consistent safety margins. 

 
Figure 4. Scatter Plot of the Dataset Factor if Safety for both EN 1994-1-1 and AISC 360-16 Codes 
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A combined analysis of safety factors for both codes further underscores their inadequacy in reliably estimating 
stud shear resistance. The majority of data points fall short of the targeted safety factor of 1.25, as shown in Figure 5, 
this highlights the urgent need for substantial revisions to both codes to address these discrepancies and improve their 
accuracy and applicability in modern construction 

 

 
Figure 5. Scatter Plot of the Dataset Factor if Safety for both EN 1994-1-1 and AISC 360-16 Codes 

 
3.2. Machine Learning Model 
 
3.2.1 Unmodified Approach 

The study evaluated preliminary machine learning models, including Linear Regression, Decision Tree, Random 
Forest, and XGBoost, using R² and RMSE. Random Forest outperformed the others, achieving an R² of 0.72, the lowest 
RMSE (11.21), indicating superior predictive accuracy. However, these preliminary models lacked sufficient reliability 
for structural applications, necessitating the development of more advanced techniques. 

Final model performance was assessed with XGBoost, LightGBM, Random Forest, and Decision Tree. Random 
Forest achieved the highest R² (0.9149), adjusted R² (0.9063), and the lowest RMSE (6.87) and RMSE percentage 
(9.38%), making it the most accurate and reliable model. XGBoost and LightGBM also performed well, with R² values 
of 0.9116 and 0.9044, respectively, while Decision Tree showed lower stability in cross-validation (R² CV = 0.7083). 
Random Forest's minimal error and consistency confirmed it as the optimal model for further analysis. 

 

 
Figure 6. Scatter Plot of Actual V Predicted for the Training Set Using Random Forest 
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Applying Random Forest to the training set showed strong alignment between predicted and actual values, with points 
clustering closely around the y = x line, particularly in the mid-range. For EN cases, the model performed exceptionally for 
Cases EN 0, A, and E, achieving R² values of 0.98, 0.96, and 0.97, respectively, with standard deviations reduced to 0.07, 
0.07, and 0.08. Cases EN B, C, and F showed moderate accuracy, with R² values of 0.86, 0.77, and 0.73 and standard 
deviations of 0.10, 0.09, and 0.10, respectively. Compared to the EN code provisions, which exhibited an average standard 
deviation of 0.317, the machine learning model reduced variability by over 73%, achieving an average standard deviation of 
0.085. For AISC cases, Random Forest achieved high R² values for Cases Y (0.94), X (0.92), and W (0.89), with slightly 
lower accuracy for Case Z (0.84). Standard deviations were significantly reduced to 0.07 for Cases Y and X, 0.08 for Case 
W, and 0.08 for Case Z. In contrast, the AISC provisions had standard deviations of 0.196, 0.177, 0.185, and 0.180 for these 
cases, with an average of 0.185. The machine learning model reduced variability by over 59%, highlighting its superior 
accuracy and consistency compared to traditional code provisions. 
 

 
Figure 7. Code Provisions Standard Deviations V Machine Learning Prediction Standard Deviations 

 
3.2.2 Modified Approach 

A hybrid approach was developed by dividing machine learning-predicted Pe values by a safety factor of 1.25 to ensure 
structural reliability. The adjusted predictions were compared to experimental results using a scatter plot, with the trend line 
showing a strong linear correlation (R² = 0.93). 

The adjusted predictions closely aligned with experimental values, with an average ratio of 1.24, near the target safety 
factor of 1.25. The low spread around the average ratio highlights the hybrid approach's reliability and precision, ensuring 
both accuracy and safety in shear resistance predictions. 

 

 
Figure 8. Modified Machine Learning Model V Actual Experimental Results 

 
3.2.3 Comparison with Current Code Provision Results 

The scatter plot shown in Figure 9 compares the ratios of machine learning predictions, EN 1994-1-1, and AISC 360-
16 provisions against the safety factor of 1.25. Machine learning predictions, with an average ratio of 1.24, closely align with 
the target, demonstrating superior accuracy and consistency. In contrast, EN 1994-1-1 averages 1.09, falling short, and AISC 
360-16 underpredicts with 0.83. This underscores the machine learning model's reliability and its outperformance of both 
codes. 



 
 

 
 

 
 

 
ICGRE 158-8 

 
Figure 9. Comparison of the Modified Machine Learning Model with the Other Code Provisions 

 
3. Conclusions 
• A machine learning-based approach was developed to improve shear resistance predictions for headed studs, 

addressing limitations in EN 1994-1-1 (average ratio 1.09, below the target safety factor of 1.25) and AISC 360-16 
(average ratio 0.83, significantly underpredicted). 

• The Random Forest model achieved the best results with R² = 0.9149 and RMSE = 6.87. Adjusted predictions, 
divided by 1.25 for safety, achieved an average ratio of 1.24 and R² = 0.93, aligning closely with the target safety 
factor while maintaining a strong linear correlation with experimental results. 

• Standard deviations were significantly reduced with the machine learning model (0.07 to 0.10), compared to EN 
provisions (0.227 to 0.543) and AISC provisions (0.177 to 0.196), achieving a 73% reduction in variability compared 
to EN and 59% compared to AISC. 

• Machine learning predictions consistently reduced variability and maintained accuracy across all cases, 
outperforming traditional design provisions while ensuring structural safety margins. 

• This study demonstrates the potential of machine learning to enhance structural design practices, offering 
greater precision and reliability when combined with safety adjustments to meet accuracy and safety 
standards. 
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