
Proceedings of the 10th World Congress on Civil, Structural, and Environmental Engineering (CSEE 2025) 
Barcelona, Spain - April, 2025 
Paper No. ICSECT  170 
DOI: 10.11159/icsect25.170 

ICSECT 170-1 

 

 Data-Driven Strength Prediction of Recycled Aggregate Concrete: 
Insights from Boosting-Based Machine Learning Models 

 
Mahan Samiadel1, Farahnaz Soleimani1 

1Oregon State University 
Kearney Hall, 1491 SW Campus Way, Corvallis, Oregon, USA 

samiadem@oregonstate.edu; farahnaz.soleimani@oregonstate.edu  
 

 
Abstract - Accurate prediction of the compressive strength (CS) of recycled aggregate concrete (RAC) is crucial for optimizing mix 
design and ensuring structural integrity. This study compares the predictive performance of six tree-based and ensemble learning 
models—Decision Tree, Random Forest, Adaptive Boosting, Gradient Boosting, Light Gradient Boosting Machine, and Extreme 
Gradient Boosting—using a dataset comprising RAC compositions and testing age. The models are evaluated based on predicted versus 
actual CS values, residual distributions, and statistical performance metrics, including the coefficient of determination (R²) and root mean 
squared error (RMSE). The results indicate that boosting-based models, particularly Extreme Gradient Boosting and Light Gradient 
Boosting Machine, achieve the highest predictive accuracy, with R² values of 0.94 and the lowest RMSE scores, demonstrating their 
effectiveness to capture complex nonlinear relationships. In contrast, Decision Tree and Adaptive Boosting exhibit greater variance and 
lower reliability, primarily due to their sensitivity to data partitioning and noise. These findings underscore the effectiveness of ensemble 
learning techniques in predicting RAC properties and highlight the potential for further improvements through hybrid modeling 
approaches and hyperparameter optimization. This study contributes to advancing sustainable construction practices by enhancing the 
accuracy and reliability of machine learning-based predictive models for recycled concrete applications. 
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1 Introduction 

RAC is a sustainable material that replaces natural aggregates with recycled ones from construction and demolition 
waste, reducing landfill use and conserving resources [1-2]. Due to adhered mortar, recycled coarse aggregates exhibit higher 
water absorption, lower density, and increased porosity, affecting RAC’s mechanical properties, including compressive and 
tensile strength, carbonation, and chloride penetration. However, optimized mix design, aggregate pre-treatment, and 
admixtures can enhance its performance to match conventional concrete [1], [3]. Studies have shown that seismically detailed 
RAC columns exhibit comparable strength and ductility to those made with natural aggregates, confirming its suitability for 
structural applications [4]. RAC is effectively used in pavements and structural elements like beams, with up to 25% recycled 
aggregates showing minimal impact on shear strength [2]. Its adoption supports sustainability by reducing carbon emissions 
and environmental impact [1], [3]. 

The application of machine learning (ML) techniques for predicting the mechanical properties of RAC has gained 
significant attention due to their ability to model complex relationships. Behnood et al. utilized the M5’ model tree algorithm 
to predict the elastic modulus of RAC, achieving an accuracy of over 80%, outperforming traditional regression models that 
often fail to account for the unique properties of recycled aggregates [5], [6]. Similarly, Duan et al. demonstrated the 
effectiveness of artificial neural networks in predicting the elastic modulus by training models with comprehensive datasets, 
which included diverse sources of recycled aggregates, ensuring broad applicability [7]. 

In the context of resilient modulus prediction for pavement applications, Kaloop et al. [8] compared ANN models with 
regression techniques, concluding that ANNs provide more accurate estimations for blends of recycled concrete and clay 
masonry, highlighting their adaptability to different mix designs and material combinations. For predicting nominal shear 
strength, Ababneh et al. [9] employed ANN models to estimate the contribution of RAC to the shear capacity of beams 
without transverse reinforcement. The study confirmed that ANN models could closely replicate experimental results, with 
variations as low as 8%, making them a reliable tool for structural applications. 
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The integration of ML models like ANNs and M5’ trees with parametric sensitivity analysis, as demonstrated by 
Xu et al. [10], further enhances the understanding of how different factors—such as aggregate properties and mix 
proportions—influence RAC’s mechanical behavior. These advanced techniques not only provide accurate predictions 
but also facilitate optimization in the design of RAC mixtures. 

While ML models like ANNs and M5’ trees have shown high accuracy in predicting RAC properties, their reliance 
on diverse and high-quality datasets limits their practicality. Additionally, challenges like overfitting and adapting to field 
conditions remain underexplored, requiring further investigation to enhance model robustness and real-world applicability. 

ML techniques have proven to be highly effective in predicting the CS of RAC, leveraging their ability to handle 
the complex, nonlinear relationships between various influencing factors. Duan et al. [11] utilized artificial neural 
networks with 14 input parameters, including water-cement ratio, aggregate types, and replacement ratios, achieving 
high accuracy in predicting the 28-day CS of RAC using datasets from multiple sources. Similarly, Khademi et al. [12] 
compared the performance of ANN, adaptive neuro-fuzzy inference systems, and multiple linear regression, concluding 
that ANN outperformed others with a determination coefficient of 0.92. 

Advanced approaches such as deep learning and ensemble models have also been applied. Deng et al. developed a 
deep learning model incorporating convolutional neural networks, demonstrating superior prediction precision and 
efficiency compared to traditional ANNs [13]. Furthermore, Hoang [14] proposed an ant colony-optimized extreme 
gradient boosting machine model, which achieved outstanding accuracy with an RMSE of 4.98 and demonstrated 
significant improvements over baseline models. 

To further improve predictions, studies like those by Hosseinzadeh et al. [15] combined recycled aggregates with 
supplementary materials like fly ash, using ML algorithms such as random forests and extreme gradient boosting to 
achieve prediction accuracies exceeding 95%, thus demonstrating the adaptability of ML to varying RAC compositions 
and properties. These advancements highlight the critical role of ML in optimizing RAC mix designs and reducing the 
need for exhaustive experimental testing. 

ML improves RAC CS prediction but faces challenges like data inconsistency and computational demands. This 
study compares tree-based and ensemble models, including decision tree, random forest, adaptive boosting, gradient 
boosting, light gradient boosting machine, and extreme gradient boosting, using a dataset with RAC components and 
testing age. The research evaluates predictive accuracy, efficiency, and robustness, aiming to enhance mix design 
optimization and support sustainable construction. 

 
2 Dataset description 

In this study, a dataset of 1,100 samples sourced from the work of Hoang [14] was used. This dataset was collected 
from 46 different sources. This dataset includes input and output variables relevant to RAC. The input variables consist of 
the contents of cement (C), silica fume (SF), fly ash (FA), water (W), natural fine aggregate (NFA), natural coarse aggregate 
(NCA), recycled fine aggregate (RFA), recycled coarse aggregate (RCA), and the age of testing (A), measured in days. The 
output variable is the CS of the concrete, recorded in MPa. These variables, detailed in Table 1, provide a comprehensive 
representation of the components and testing conditions for RAC mixes, enabling robust modeling and prediction of its 
mechanical properties. 

Table 2 presents descriptive statistics for the variables, highlighting their variability. For instance, the cement content 
(C) ranges from 140 to 600 kg/m³, with a mean of 356 kg/m³ and a standard deviation of 72.7 kg/m³. The recycled coarse 
aggregate (RCA) shows a broad range, from 0 to 1632 kg/m³, with an average of 518.5 kg/m³. The testing age (A) spans 
from 1 to 180 days, with a median of 28 days, reflecting the diversity in curing periods. Variables such as silica fume (SF) 
and recycled fine aggregate (RFA) exhibit skewness, indicating asymmetry in their distributions. This variability across 
inputs ensures the dataset's suitability for evaluating complex, nonlinear relationships in RAC properties. 
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Table 1: Variables, notations, and units 

 Variable Notation Unit 

Input Variables 

Cement Content C Kg/m3 

Silica Fume Content SF Kg/m3 
Fly Ash Content FA Kg/m3 
Water Content W Kg/m3 

Natural Fine Aggregate NFA Kg/m3 
Natural Coarse Aggregate NCA Kg/m3 
Recycled Fine Aggregate RFA Kg/m3 

Recycled Coarse Aggregate RCA Kg/m3 
Age of Testing A Days 

Output Variable Compressive Strength CS MPa 

Table 2: Descriptive statistics for the variables 

 C SF FA W NFA NCA RFA RCA A 
Max 600.0 50.0 227.5 271.0 1065.0 1366.0 1000.0 1632.0 180.0 
Min 140.0 0.0 0.0 120.0 0.0 0.0 0.0 0.0 1.0 

Average 356.0 1.1 27.3 193.3 650.1 529.9 33.0 518.5 32.7 
Mode 350.0 0.0 0.0 205.0 642.0 0.0 0.0 0.0 28.0 

Median 361.0 0.0 0.0 193.1 685.0 543.2 0.0 496.5 28.0 
StD 72.7 6.1 58.1 26.0 222.2 447.2 134.7 427.7 36.4 

Skewness -0.9 6.1 2.0 -0.3 -1.4 0.0 4.5 0.3 2.1 
 

The pairplots, correlation matrix, and variables distributions are all shown in Fig. 1 to explore relationships and 
patterns among the variables. In the pairplots, CS shows a moderate positive relationship with cement content and age of 
testing, indicating their significant role in enhancing RAC strength. However, variables like silica fume, fly ash, and recycled 
fine aggregate exhibit a more scattered relationship with CS, suggesting their weaker influence or potential non-linear effects. 
Notably, recycled coarse aggregate shows a slight negative trend with CS, potentially reflecting the adverse impact of adhered 
mortar or lower quality of recycled materials. 
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Fig. 1: a) Pairplots, b) Correlation matrix, and c) Distributions of variables 

The correlation heatmap further quantifies these observations. Cement content and age exhibit moderate positive 
correlations with CS (0.37 and 0.36, respectively). Conversely, RCA and RFA show weak negative correlations (-0.24 
and -0.21), indicating their detrimental effect on CS. Other variables, such as natural coarse aggregate and water content, 
exhibit negligible correlations with CS, highlighting their limited direct impact in the current dataset. 

The variable distributions reveal significant variability among the features. Cement content and water content 
exhibit relatively normal distributions, while RCA and age display skewed distributions, indicating the predominance 
of certain mix designs or testing durations. The CS distribution shows a slightly right-skewed pattern, reflecting higher 
frequencies of lower-strength RAC samples. These insights underline the diverse and complex nature of the dataset, 
which is well-suited for exploring the predictive capabilities of ML models. 
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3 Methodology 
The prediction capability of six tree-based and ensemble learning models using the described RAC dataset is 

comprehensively investigated in this study. Specifically, Decision Tree, Random Forest, Adaptive Boosting, Gradient 
Boosting, Light Gradient Boosting Machine, and Extreme Gradient Boosting are employed to analyze the complex 
relationships between the components of RAC, testing age, and the resulting CS. Models are systematically optimized and 
evaluated to ensure robust and reliable predictions. Each algorithm is briefly explained below to provide a foundational 
understanding of its working principles and relevance to the analysis. 

To evaluate the models' performance, two key metrics are utilized: RMSE, which measures the average magnitude of 
prediction errors, and the R² score, which assesses how well the model explains the variability of the target variable. A 10-
fold cross-validation approach is adopted to optimize hyperparameter values for each model and ensure generalization by 
minimizing overfitting and bias. This approach involves splitting the dataset into ten subsets, iteratively training the model 
on nine subsets, and validating it on the remaining subset, thereby providing a robust framework for model evaluation. By 
leveraging these methods, this study aims to identify the most effective model for predicting the CS of RAC. 
 A regression decision tree (DT) predicts continuous values by recursively splitting data to minimize variance. It creates 
simple, interpretable rules but can overfit without pruning. Despite its efficiency, it often lacks generalization, making 
ensemble methods like Random Forest and Gradient Boosting preferable for improved accuracy [16]. 
 Random Forest (RF) is an ensemble method that builds multiple DTs and averages their predictions to improve 
accuracy and reduce overfitting. It has been widely used in structural engineering for analyzing complex responses 
and identifying critical factors influencing performance, making it well-suited for predicting the mechanical 
properties of recycled aggregate concrete [17]. It handles complex, nonlinear data well but requires hyperparameter 
tuning for optimal performance [18]. 
 Adaptive Boosting (AdaBoost) enhances weak learners by adjusting sample weights, focusing on harder-to-predict 
data. It improves accuracy but is sensitive to noise and requires careful tuning for stability [19]. 
 Gradient Boosting (GB) is an ensemble learning technique that builds trees sequentially, with each tree correcting the 
residual errors of the previous one. It effectively captures complex nonlinear relationships and delivers high predictive 
accuracy. However, it requires careful tuning of hyperparameters like learning rate and tree depth to balance performance 
and prevent overfitting [20]. 
 Light Gradient Boosting Machine (LightGBM) is an optimized gradient boosting method that grows trees leaf-wise 
for better accuracy and efficiency. It excels in handling large datasets and complex patterns but requires careful tuning to 
prevent overfitting [21]. 
 Extreme Gradient Boosting (XGBoost) is a high-performance GB algorithm that improves accuracy with 
regularization and parallel processing. It efficiently handles complex data but requires hyperparameter tuning for optimal 
performance [22]. 
 
4 Results and Discussion 

The predictive performance of six tree-based and ensemble learning models—DT, RF, AdaBoost, GB, LightGBM, 
and XGBoost—was evaluated using the RAC dataset. The comparison was based on predicted versus actual CS values, 
residual distributions, and statistical performance metrics, including the coefficient of determination (R²) and RMSE. The 
results are shown in Fig. 2. 
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Fig. 2: a) Predicted vs. actual CS values, b) residuals distributions, and c) R2 and RMSE plots 

The scatter plot comparing actual and predicted CS values demonstrates the accuracy and distribution of predictions 
for each model. The XGBoost model exhibits the closest alignment with the diagonal reference line, indicating superior 
predictive accuracy. Most predictions for GB and LightGBM also fall within the ±20% error margins, signifying their 
reliability. Conversely, DT and RF models exhibit greater dispersion, particularly for higher CS values, highlighting their 
limitations in capturing complex relationships. 

The residuals distributions plot further illustrates model performance by analyzing the distribution of prediction errors. 
The XGBoost and LightGBM models show the highest peak and the narrowest spread, indicating minimal prediction errors 
and consistent performance across data points. In contrast, the DT model exhibits a broader distribution, with a higher 
occurrence of large residuals, confirming its susceptibility to overfitting and limited generalization capability. RF also 
presents wider residual variability, suggesting its reduced effectiveness in capturing nonlinear patterns. 

The bar and line chart compares the R² and RMSE values for each model. XGBoost, GB, and LightGBM achieved the 
highest R² values (0.94), indicating a strong correlation between predicted and actual values. These models also recorded the 
lowest RMSE values, demonstrating their high predictive accuracy. RF followed closely, with an R² of 0.88, though its 
RMSE was slightly higher. DT and RF performed the weakest, with R² values of 0.77 and 0.69, respectively, and significantly 
higher RMSE values, reinforcing their lower reliability in predicting CS accurately. 

The results highlight the advantages of ensemble learning methods, particularly boosting-based algorithms, in 
predicting the CS of RAC. XGBoost consistently outperformed other models, owing to its ability to minimize overfitting 
while capturing complex nonlinear interactions, which aligns with previous findings on the effectiveness of ensemble 
methods in structural modeling contexts [23]. LightGBM and GB also demonstrated robust performance, benefiting from 
optimized tree structures and efficient handling of feature importance. RF, while providing reliable predictions, showed 
slightly higher variance compared to boosting methods. Its strength lies in evaluating feature importance and identifying key 
predictors, which has been effectively demonstrated in various sensitivity analyses and structural modeling contexts [24]. 

In contrast, DT exhibited high variability in predictions and larger residuals, reflecting its sensitivity to data 
partitioning and lack of generalization. RF, despite being an ensemble method, struggled with larger errors, likely due to its 
reliance on weak learners and sensitivity to noise in the dataset. 

 
5 Conclusion 

Overall, this study underscores the importance of selecting appropriate ML models for predicting the mechanical 
properties of RAC. Boosting-based models, particularly XGBoost, demonstrated superior accuracy and reliability in 
capturing the complex dependencies within the dataset. However, despite their advantages, these models still require careful 
hyperparameter tuning and validation to ensure their generalizability across different datasets. Further investigations into 
hybrid modeling approaches and deep learning techniques could enhance prediction accuracy and broaden applicability in 
real-world construction scenarios. Additionally, future studies should also consider integrating domain-specific knowledge, 



 
 

 
 

 
 

 
ICSECT 170-7 

such as material microstructure analysis, to improve model interpretability and decision-making. The findings from this 
research contribute to advancing sustainable construction practices by enabling more accurate strength predictions and 
optimizing the use of recycled materials in concrete production. 
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