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Abstract - Steel fiber composite bars (SFCB) are a promising alternative to steel and fiber-reinforced polymer (FRP) reinforcement due 
to their high elastic modulus and tensile strength, impressive ductility, and outstanding corrosion resistance. This research investigates 
the impact of increasing the diameter of the inner steel bar of a glass SFCB on the bond stress between the bar and the surrounding 
concrete. Abaqus finite element software simulates the pullout behavior between glass SFCB and normal-strength concrete. Results of 
the FE models were compared with experimental results in terms of crack patterns and bond stresses. The FE model results correlated 
well with the experimental results having a 0.54% error in the ultimate bond stress and a 0.67% error in the corresponding slip. A 
parametric study is conducted in which the diameter of the inner steel core is increased while all other material properties and boundary 
conditions remain constant. The composite material's behavior is analyzed accounting for the interactions between the steel bar, glass 
FRP (GFRP) cover, and surrounding concrete. Notably, increasing the diameter of the inner steel bar from 8.6 mm to 12.6 mm increases 
the bond stress from 20.7 MPa to 25.1 MPa and increases the ultimate slip from 1.17 mm to 1.57 mm. The increase in ultimate slip is 
due to the rise in bond stress which in turn is due to a decrease in the radial confinement stress between the SFCB and the surrounding 
concrete.  
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1. Introduction 

Reinforced concrete often suffers from corrosion of embedded steel reinforcement, particularly in harsh environments 
like coastal areas with wet-dry cycles and tidal effects [1], [2]. This leads to cracks, spalling, and reduced load-bearing 
capacity due to loss of bond between steel and concrete [3]–[5]. Fiber Reinforced Polymer (FRP) bars offer corrosion 
resistance but are brittle and costly [4], [6]. To address these issues, researchers developed Steel Fiber Composite Bars 
(SFCBs), combining steel’s ductility with FRP’s corrosion resistance, offering superior strength, ductility, and 
compressibility compared to either material alone [7]–[9]. 

Bond stress between reinforcement and concrete decreases with larger bar diameters, longer embedment lengths, or 
increased air entrapment during curing [10]–[14]. Self-compacting concrete (SCC) shows better bond stress than 
conventional vibrated concrete (CVC) for small-diameter bars, though this advantage diminishes with larger diameters [11]. 
Studies indicate that ribbed steel bars exhibit higher bond stress than FRP or SFCBs [15]–[18]. However, excessive slip of 
SFCBs can reduce structural performance, emphasizing the need to enhance their bond behavior [19], [20].  

Research on SFCBs reveals mixed findings: wrapping steel with FRP reduces bond stress compared to unwrapped steel, 
but increasing the steel core diameter improves bond stress for glass SFCBs [9]. Conversely, thicker basalt layers around a 
constant-diameter steel core decrease bond stress [21]. This inconsistency in results can be attributed to different material 
properties, geometric configuration, test setup, and environment, as well as loading rate [22]–[28].  

This study aims to numerically investigate how varying the inner steel core diameter of glass SFCBs impacts bond stress 
with concrete [29]. It also explores the feasibility of using glass SFCBs in reinforced concrete elements, addressing critical 
factors affecting their bond performance and structural integrity [3], [9].  
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2. Finite Element (FE) Model 
2.1. Description of the model 

This study investigates the bonding behavior between concrete and SFCB in pullout samples. Pullout samples 
consist of concrete cubes reinforced with SFCB. SFCB is embedded into concrete with an embedment length five times 
its total diameter. The total diameter is obtained by adding the steel bar diameter to the GFRP thickness. In this study, 
the total diameter of SFCB varies across pullout samples while the dimensions of the concrete cube remain constant. 
Therefore, the embedment lengths across pullout samples vary. Fig 1 shows the geometry of the pullout sample. The 
numerical program was developed for three pullout samples including POT-12, POT-14, and POT-16 to investigate the 
influence of total bar diameter of SFCB on the bond behavior.  POT – T12 stands for a pullout sample with a 12 mm 
total diameter of which 8.3 mm is steel bar and 4 mm is GFRP sheet. Table 1. summarizes the specifications of pullout 
samples. 

 
Fig 1: Pullout sample geometry 

 
Table 1: Specifications of pullout samples 

Pullout sample Steel bar diameter 
(mm) 

GFRP thickness  
(mm) 

Total bar diameter 
(mm) 

Bonded bar length, lb 
(mm) 

POT-12 8.3 4 12.6 63 
POT-14 10.3 4 14.6 73 
POT-16 12.3 4 16.6 83 

 
2.2. Material Properties 
2.2.1 Concrete 

The mechanical behavior of concrete is simulated with the Concrete Damage Plasticity (CDP) model in ABAQUS. 
Constitutive laws in the CDP model are utilized to find the compressive and tensile behavior of concrete. Dilatation angle 
and viscosity parameters are fixed at 38.5 and 0.008 to describe the plastic flow potential of concrete. The compressive 
behavior is defined using Hognestad’s model [30] to capture the nonlinear behavior of concrete under compression. 
Similarly, the tensile behavior is defined using Hsu and Mo’s model [31] to capture the nonlinear behavior of concrete under 
tension. In this study, compressive strength 𝑓𝑓′𝑐𝑐 is taken as 38.4 MPa based on the experimental work done by Xu et al [32]. 
 

Hognestad’s model [30] 

𝑓𝑓𝑐𝑐 = 𝑓𝑓′𝑐𝑐 �
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Hsu and Mo’s model [31] 
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where 𝑓𝑓𝑐𝑐 = 0.33�𝑓𝑓′𝑐𝑐  and 𝜀𝜀𝑐𝑐𝑐𝑐 = 𝑓𝑓𝑐𝑐
𝐸𝐸𝑐𝑐

 
 
 

2.2.2 Steel Bar 
The steel bar is modeled as an elastic perfectly plastic material that deforms elastically until the yield strength. Beyond 

the yield strength, the material deforms plastically at a constant value. The modulus of elasticity is defined as 200 GPa and 
the poissons ratio is 0.3. The properties of steel bars, including the yield strength and ultimate strength, vary according to the 
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bar diameter [33]. In this study, steel bar diameters of 8.6 mm, 10.6 mm, and 12.6 mm have yield strength values of 477.7 
MPa, 426 MPa, and 440 MPa and ultimate strength values of 687.6 MPa, 667 MPa, and 673 MPa, respectively [32].  

 
2.2.3 GFRP 

Due to its orthotropic nature, the mechanical properties of GFRP vary in all directions of the coordinate system [34]–
[36]. The mechanical properties of GFRP defined in the model are adopted from Alhayek et al [37]. The longitudinal elastic 
modulus along the x direction is 36.3 GPa, which shows high stiffness in the direction of the fibers. The transverse moduli 
in the y and z directions are much lower at 10.8 GPa since these directions rely on the polymer matrix rather than the fibers. 
The poissons ratio in the xy and xz planes is defined as 0.28, while 0.09 for the yz plane. The shear moduli in the xy and xz 
planes are 4 GPa. The longitudinal tensile strength along the x direction is 596 MPa, which gives the high loading-carrying 
ability of the GFRP along the direction of the fiber. 
 
2.3. Mesh and Boundary Conditions 

The model is discretized using 4-node bilinear axisymmetric quadrilateral elements (CAX4). Mesh sensitivity analysis 
was conducted to determine the most suitable mesh size that achieves a reasonable compromise between computational 
efficiency and accuracy. The optimal element mesh size is determined by reducing the size until the desired accuracy is 
achieved for the desired application of the model [38]–[40]. After several iterations, a mesh size of 5 mm was determined to 
be the most suitable. To account for symmetry, a vertical roller boundary condition is placed at the symmetric line. A roller 
boundary condition is applied to the top and bottom concrete faces to restrict vertical movements. An upward displacement 
is applied to the steel tube around SFCB to simulate the pullout loading. 

 
3. Results and Discussion 

The bonding strength between the bar and concrete in pullout samples influences their cracking patterns and failure 
modes. Studies have shown that bar pullout mainly occurs when the bond is weak, while bar rupture and concrete splitting 
occur when the bond is strong. Under pullout loading, the stress transfer in concrete reinforced with SFCB is more 
complicated than in concrete reinforced with pure steel bars. This is because the steel core in SFCB transfers the stress to the 
fiber layer first and then to the surrounding concrete. Fibers exert shear and radial stresses on the surrounding concrete with 
shear stresses acting along the bonding interface between fibers and concrete and radial stresses acting perpendicular to the 
bonding surface. 

The FE model was validated against the experimental results presented by Xu et al. [32] for the pullout sample with 
conventional concrete. The validation of the FE model is based on the bond stress versus slip responses and failure mode. 
The bond stress is obtained from the shear forces at the concrete-SFCB interface, whereas the slip is obtained at a point on 
the shorter side of the bar.  Fig. 2 shows the bond stress versus slip response of the FE model in comparison to the 
experimental response. Results from the FE model correlated well with the experimental response, achieving ultimate bond 
stress of 20.554 MPa at 0.775 mm as compared to 20.665 MPa at 0.781 mm in the experimental response. The percentage 
error of the ultimate bond strength is 0.54% while the corresponding slip percentage error is 0.76%. The primary failure 
mode observed in the FE model is concrete splitting which correlates with the experimental failure mode shown in Fig. 3. 
Under pullout loading, deformations progressed from the anchorage point between concrete and SFCB towards the middle 
of the cube, causing concrete to split.  

The bonding behavior between concrete and SFCB in the FE model is mainly controlled by stiffness and damage 
initiation parameters. Stiffness parameters include normal stiffness of the interface (Knn) and shear stiffness of the interface 
(Kss and Ktt). Damage initiation is characterized by normal, shear 1, and shear 2, in terms of the maximum nominal stress 
or strain in each direction. The damage initiation criterion is characterized by a quadratic interaction function of nominal 
stress ratios. To achieve high accuracy, thousands of simulations were performed with Python scripts for automating 
parameter identification. This approach successfully captured the acquired parameters in agreement with the experimental 
work within an error of less than 1%. 
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Fig. 2: Validation of the FE model 

 

 
(a) 

 
 

 
 

(b) 
 

Fig. 3: Cracking pattern (a) FE model (b) Experimental sample [32] 
 

As seen in Fig 4, there is a clear correlation between the diameter of the steel bar embedded within the glass SFCB and 
the bond stress that develops between the reinforcement and the surrounding concrete. For instance, the SFCB with a 
diameter of 12.6 mm, having a steel bar measuring 8.6 mm in diameter, has a bond stress of 20.7 MPa at a corresponding 
slip of 0.78 mm. Increasing the steel bar diameter to 10.6 mm to have a SFCB of 14.6 mm increases the bond stress by 12% 
to 23.1 MPa and the corresponding slip to 0.78 mm. Finally, further increasing the diameter of the SFCB to 16.6 mm where 
the inner steel bar has a diameter of 12.6 mm, increases the bond stress till it reaches 25.1 MPa and the corresponding slip is 
0.78 mm. Increasing the diameter of the inner steel core while maintaining a constant thickness of the GFRP outer layer, 
simultaneously increases the bond stress of the SFCB whereas the corresponding slip is relatively constant. This is because 
an increase in the diameter of the steel bar decreases the radial confinement stress. This refers to the compressive stress that 
the FRP outer layer exerts on the steel inner core or the stress that the FRP layer applies on the surrounding concrete. This 
radial confinement stress is influenced by the radius of the steel core, the radius of the FRP cover, the pressure at the interface 
between the materials, the elastic modulus of FRP, and the Poisson ratio of steel. When the thickness of the GFRP layer is 
constant, increasing the diameter of the steel bar decreases the radial confinement effect. As a result, there is less stress acting 
by the GFRP on the steel and on the concrete which in turn increases the bond stress. 

The ultimate slip or the slip at failure of the SFCB is greater than that of pure steel bars. In this analysis, the ultimate 
slip ranges between 1.17mm for the SFCB with the smallest diameter and 1.57 mm for the SFCB with the largest diameter. 
This ultimate slip is the slip at which the bond between the reinforcement and the surrounding concrete fails. As the ultimate 
slip increases for specimens with higher bond stress, this means that the interaction area carries a significant load and absorbs 
a large amount of energy prior to failure. The GFRP cover enhances the bar’s slip capacity. Although the thickness of the 
GFRP remains constant throughout the study, increasing the diameter of the inner steel bar increases the total diameter of 
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the SFCB which in turn means an increase in the ultimate slip. Therefore, a high ultimate slip reflects a strong bond between 
the SFCB and the concrete.   

Von Mises Stresses is an important parameter to study in numerical models [41]–[45]. These stresses show the 
deformability of a material under complex loading conditions. Fig 5 clearly shows that increasing the diameter of the inner 
steel core of the glass SFCB decreases the maximum Von Mises Stress experienced by the rebar. The 12.6 mm glass SFCB 
has the largest maximum Von Mises stress at around 43.34 MPa. When the diameter of the glass SFCB increases to 14.6 
mm, the maximum Von Mises Stress reduces to 7.59 MPa, and it further decreases to 1.61 MPa when the diameter is 16.6 
mm. A high Von Mises Stress at the interface of the SFCB and the concrete indicates that the region is under severe internal 
stresses, which potentially lead to yielding, plastic deformation, or failure. Therefore, high Von Mises Stresses occur in 
SFCB of small diameters where the bond stress between the bar and the concrete is minimal.  As the diameter of the internal 
steel bar increases, the distribution of stress around the bar becomes more uniform. This results in a reduction of localized 
stress concentrations which in turn prevents failure.  

 
Fig. 4: Parametric study 

 

 
(a) 

 
(b) 

 
(c) 

Fig 5: Von Mises Stresses of (a) POT-12 (b) POT-14 (c) POT-16 
 
4. Conclusion 

Reinforced concrete structures are susceptible to durability challenges in harsh environments. Durability challenges arise 
from the corrosion of steel reinforcement and degradation of concrete causing cracking, spalling, and ultimately structural 
failure. Glass SFCB emerged as an attractive alternative to steel bars in reinforced concrete elements. The pullout behavior 
between concrete and SFCB has been studied, and the following conclusions have been reported. 

1. The validation of the FE model in terms of bond versus slip response and failure mode correlated well with the 
experimental results with an error of 0.54% in ultimate bond stress and 0.76% in slip measurements. Due to material 
properties differences, the FE model had a higher energy absorption capacity. 
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2. Increasing the steel bar diameter in glass SFCB from 8.6 mm to 10.6 mm and 12.6 mm resulted in a slight increase 
in the bond stress by 12% and 8.5% respectively, whereas the corresponding slip remains approximately constant at 
0.775 to 0.778 mm. This is mainly due to the reduced radial confinement stress that the FRP layer applies on the 
surrounding concrete. 

3. The ultimate slip at which the bond between concrete and SFCB fails increases from 1.166 mm to 1.567 mm, 
enabling pullout samples to have more ductility and resilience. Higher ultimate slip indicated better bonding 
performance that results in a higher energy absorbing capacity. 

4. Von Mises stresses reduce with the increase in steel bar diameter from 43.34 MPa, 7.59 MPa, and 1.61 MPa with 
the increase in bar diameter from 12.6 mm, 14.6 mm, to 16.6 mm. This indicates diminished localized stress 
concentration and improved resistance to failure. Larger steel bar diameters reduce stresses more evenly at the 
interface which reduces concentration points. 
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