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Abstract - This study introduces a novel methodology for automating the analysis of Building Information Modeling (BIM) data using 

LangGraph and integrating Google’s Gemini Large Language Model (LLM) with IfcOpenShell. BIM, and specifically Industry 

Foundation Class (IFC) files, are widely used in the construction industry for representing and managing building data. However, 

analyzing this data effectively remains a significant challenge due to its volume and complexity. Additionally, analyzing BIM data 

typically requires knowledge of different BIM software depending on the application. This research addresses this challenge by creating 

a workflow that utilizes LangGraph’s ability to develop different AI agents designed to handle tasks like extracting element data, 

analyzing spatial relationships, and categorizing risks based on predefined criteria, without the need for any BIM software at all. The 

integration of Gemini LLM provides advanced language-based reasoning and decision-making capabilities that allow the system to 

process complex queries, in human language, and provide valuable insights from the BIM data. As a proof-of-concept, four applications 

of the LangGraph methodology were created, providing significant insights regarding the strengths and limitations of this framework. 

The models were validated through hypothetical case studies and real-world applications, and responses were evaluated based on their 

accuracy, validity, and completeness, demonstrating the framework’s effectiveness in analyzing BIM data in construction projects. 

However, the results also revealed limitations that can affect the system’s performance in large-scale real-world applications. These 

findings suggest that while the proposed system shows great potential, further optimization is needed to enhance its usability and 

reliability in more complex and large-scale scenarios. 
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1. Introduction 
The construction industry has witnessed significant advancements in digital tools, with Building Information Modeling 

(BIM) emerging as a transformative technology. By providing a centralized repository for project information, BIM has 

enhanced collaboration, accuracy, and efficiency in design and construction workflows. Among the various standards for 

BIM, the Industry Foundation Class (IFC) format stands out as a widely adopted open standard for representing and 

exchanging building data. Despite its benefits, analyzing the complex and voluminous data within IFC files presents a 

persistent challenge, often requiring domain expertise and specialized software tools. Traditionally, BIM data analysis relies 

heavily on proprietary software, creating barriers such as steep learning curves, high costs, and limited interoperability. These 

challenges highlight the need for innovative solutions that can simplify data analysis while reducing dependency on 

traditional software. Recent developments in artificial intelligence (AI), particularly large language models (LLMs) like 

Google’s Gemini, have shown promise in addressing complex reasoning and decision-making tasks. When combined with 

advanced frameworks like LangGraph and tools such as IfcOpenShell, AI presents an opportunity to revolutionize BIM data 

analysis. 

 

2. Literature Review 
Recent advancements in AI, particularly LLMs and Natural Language Processing (NLP), have been increasingly applied 

to BIM for tasks such as data visualization, access democratization, compliance checking, and automated data extraction. 

Alla, Osello, Rimella, and Stradiotto [1] developed a web-based IFC viewer aimed at improving visualization and user 

interaction within BIM workflows. Their system integrated synchronized model alignments and cross-sectional 
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visualizations while leveraging NLP-powered conversational agents to enable intuitive user commands. The study 

demonstrated how AI can enhance accessibility through cost-effective, web-based solutions, making BIM more user-

friendly for non-technical stakeholders. Similarly, Massafra, Coragila, Predari, and Gulli [2] explored the integration of 

LLMs in BIM to improve model accessibility. Their research employed a knowledge graph structure where BIM data 

was stored as nodes and edges, allowing ChatGPT to process textual queries and provide analysis. The user-friendly 

graphical interface further simplified interactions, making BIM data analysis more intuitive for non-expert users. 

A growing body of research has also investigated the role of LLMs in Automated Compliance Checking (ACC) 

within the architecture, engineering, and construction (AEC) industry. Iversen, Huang, and Merschbrock [3] examined 

LLMs for BIM-based validation of natural language building regulations. Their artifact incorporated four modules: rule 

analysis, BIM model extraction, compliance validation, and report generation. The system achieved F1 scores of 97% 

for regulation classification and 100% for rule dependency identification, showcasing LLMs' potential to reduce manual 

labor and enhance regulatory transparency. Ying and Sacks [4] advanced this approach by developing an autonomous 

LLM agent for ACC. Using Retrieval-Augmented Generation (RAG) and the ReAct framework, their system retrieved 

design requirements, planned and executed checks, and generated compliance reports while also supporting model 

revisions based on rule-checking results. Their findings highlighted LLMs' ability to streamline compliance validation 

and automate complex design tasks. Chen, Lin, Jiang, and An [5] further expanded on AI-driven ACC by integrating 

deep learning models and ontology-based knowledge frameworks, thereby improving accuracy and efficiency in 

regulatory compliance verification. 

Beyond compliance, AI has also been applied to BIM data structuring and querying. Chu, Wu, and Lei [6] addressed 

challenges in querying construction data by developing IFC-Graph, a model-driven approach that converts IFC data into 

labeled property graphs. By mapping IFC concepts to graph structures, their methodology enabled efficient data retrieval 

and improved queryability compared to traditional relational databases. Wang, Issa, and Anumba [7] took a different 

approach by designing an NLP-based query-answering system for BIM. Their system used three modules—Natural 

Language Understanding, Information Extraction, and Natural Language Generation—to interpret user queries, extract 

IFC data, and generate natural language responses. A prototype tested on seven BIM models and 127 queries achieved 

81.9% accuracy, demonstrating NLP's potential in making BIM data more accessible. Similarly, Dawood, Siddle, and 

Dawood [8] combined NLP and IFC data models to identify and manage design changes. Their web-based platform 

visualized model differences and employed NLP to detect modifications across design iterations, assisting designers and 

3D modelers in tracking project updates. 

A Systematic Literature Review by Du, Hou, Zhang, Tan, and Mao [9] assessed the readiness of BIM data for AI 

applications. By analyzing 93 studies from SCOPUS and WoS, the authors identified eight common data types, two data 

management frameworks, and four primary data conversion methods used in BIM. Their findings suggest that while AI 

integration in BIM is advancing, data readiness remains at an intermediate stage, requiring further optimization for 

seamless AI adoption. 

One promising AI framework for handling complex, multi-step workflows in BIM is LangGraph. LangGraph is 

designed to structure AI workflows using a graph-based approach, where tasks are represented as nodes and execution 

follows a dynamic sequence [10]. Unlike traditional linear systems, LangGraph supports cyclic computation, allowing 

AI agents to revisit and refine previous steps based on evolving data and real-time decisions. This makes it particularly 

useful for applications requiring iterative reasoning, adaptive decision-making, and continuous interaction with external 

data sources. LangGraph operates using a stateful graph, where dynamic memory is updated throughout execution. Each 

node can access this state, ensuring informed decision-making at every stage. Nodes execute specific tasks, such as 

processing inputs, interacting with external systems, or making decisions, while edges define the execution flow and 

enable conditional branching based on real-time data. This flexibility allows AI agents to navigate complex, multi-step 

workflows that adapt dynamically to changing conditions. 

LangGraph has been successfully implemented in various fields to develop advanced AI-based applications. Easin, 

Sourav, and Tamás [11] utilized LangGraph to create an intelligent personalized assistant for digital banking, integrating 

a multi-agent framework with Chain of Thoughts prompting. By mapping user interactions to structured nodes, the 
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system efficiently handled banking services such as fund transfers, bill payments, and savings management. Similarly, Liu, 

Kang, and Han [12] leveraged LangGraph to optimize Retrieval-Augmented Generation for processing complex automotive 

industry documents, developing a self-RAG agent that improved retrieval accuracy and context compression in offline PDF 

chatbots. Their approach outperformed naive RAG baselines, highlighting LangGraph’s effectiveness in industry-specific 

intelligent document processing. 

De Alba, Kobayashi, and Cabello [13] applied LangGraph to Space Domain Awareness, integrating it with a space scene 

simulator to enhance accessibility for configuring complex simulations. LangGraph structured the system’s modular design, 

enabling natural language interactions for precise simulation configurations. Experiments demonstrated its robustness, 

achieving 70.41% accuracy in mapping user inputs to valid configurations. In healthcare innovation, Aikins and Khansa [14] 

employed LangGraph to optimize AI-driven patent analysis and innovation management. The framework structured and 

secured multi-agent workflows, ensuring scalable operations while addressing privacy concerns. Lastly, Timms, Langbridge, 

and O'Donncha [15] utilized LangGraph for anomaly detection in maritime shipping, orchestrating an agentic system that 

analyzed environmental conditions and system dynamics for predictive maintenance. By managing multi-agent workflows, 

LangGraph enabled efficient routing of tasks such as anomaly detection, asset health forecasting, and maintenance 

scheduling, marking a significant advancement in operational decision-making. 

 

3. Methodology 
The methodology involves LLM setup and initialization, IFC data parsing and preparation, querying Gemini LLM, and 

processing of results. For the LLM setup and initialization, an API key for Google Gemini was obtained through the Google 

API Console, and authentication was configured in the Python environment. IfcOpenShell was installed and configured to 

parse and manipulate IFC files, which store building data. LangGraph was then set up to orchestrate the workflow as a multi-

agent system. For IFC data parsing and preparation, IfcOpenShell was utilized to load and parse IFC files. Building data, 

including geometry, spatial relationships, and properties, was extracted and preprocessed to ensure compatibility with the 

LLM. The extracted data was converted into a structured text format or prompts that could be effectively processed by the 

LLM. To query Gemini LLM, the preprocessed data was sent to the LLM through LangGraph. The LLM was tasked with 

handling challenging queries, such as analyzing spatial relationships, identifying compliance issues, or proposing design 

modifications. Specific prompts tailored to each task were employed to generate relevant insights. As for processing results, 

the outputs from the LLM were processed to produce actionable recommendations or insights, such as identifying conflicts 

in design, compliance issues, or optimization suggestions. 

 

4. Applications of Proposed Model 
Four proof-of-concept applications were developed based on the above methodology: Element Analysis Agent, Solid 

Slab Area Analysis Agent, Footing Area Analysis Agent, and Multi-Agent Depth & Proximity Analysis Workflow. 

The Element Analysis Agent is designed to extract all data relevant to a specific element in the BIM model. By allowing 

users to query specific elements and retrieve all related information, it offers precise insights into individual building 

components, streamlining workflows and enhancing decision-making. Fig. 1 shows the Element Analysis Agent’s 

LangGraph. 
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Fig. 1: Element Analysis Agent LangGraph 

 

The graph starts at the initialization node, where the process is prepared for execution. From there, it transitions to 

the first operational node, which is responsible for loading the IFC file. At this stage, the application opens the specified 

file using IfcOpenShell and loads its data into memory. If the file is successfully loaded, the information is stored in the 

graph's state for further analysis; otherwise, appropriate error messages are generated, and the workflow halts. Once the 

file is loaded, the workflow proceeds to the next node, where the application identifies all available element types in the 

IFC model. This involves scanning the file to categorize its contents, such as columns, walls, beams, or other building 

elements. The extracted types are stored in the graph state, providing the basis for the next analytical step. Following 

this, the workflow moves to the node dedicated to extracting properties of a specific element type selected by the user. 

This step retrieves detailed information such as the Global IDs, names, and specific attributes of the selected elements. 

The extracted data not only offers an in-depth understanding of the elements but also serves as the context for the next 

stage. After the properties are extracted, the workflow transitions to the node responsible for querying the LLM. At this 

stage, the LangGraph uses the previously extracted element data along with a user-provided query to interact with the 

LLM. For example, the user might ask for detailed insights about column elements or inquire about the number of beam 

elements in the model. The LLM processes the input data and query in context, generating an AI-driven response. This 

response is stored in the graph state and provides valuable insights derived from the combination of BIM data and the 

LLM's interpretive capabilities. The LangGraph concludes at the final node, where all results are collated, including the 

extracted data and the AI-generated insights. The end node marks the completion of the process, and the output is either 

displayed to the user or logged for further use. This structured and sequential process ensures that the IFC data is 

analyzed comprehensively, enabling professionals in architecture, engineering, and construction to derive meaningful 

insights.  

The Solid Slab Area Analysis Agent analyzes slab elements in an IFC file to identify slabs that exceed a specified 

area threshold.  Fig. 2 shows the Solid Slab Area Analysis Agent’s LangGraph. 
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Fig. 2: Solid Slab Area Analysis Agent LangGraph 

 

The workflow begins with the initialization of the process, where the IFC file is opened and parsed using IfcOpenShell, 

and its contents are loaded into memory. This step establishes the foundational data required for slab analysis. If the file 

cannot be loaded, appropriate errors are logged, and the process halts. Next, the application extracts all IfcSlab elements 

from the model, filtering out foundation slabs and pile caps based on their names. The extracted slabs areanalyzed to compute 

their areas by processing their geometry. Specifically, slabs with rectangular profiles (IfcRectangleProfileDef) are evaluated 

by multiplying their dimensions to determine their area in square meters. Following the area calculations, the LangGraph 

prepares a summary of all extracted slabs along with their calculated areas and the predefined threshold (set to 36 m² in this 

application). This information is then sent to the AI model for evaluation. The Gemini LLM processes the provided data and 

generates insights, warnings, or recommendations related to slabs that exceed the threshold. These insights may focus on 

dimensions, placement, or structural considerations, offering valuable guidance based on the slab properties and the defined 

threshold. Finally, the process concludes with the output of slabs exceeding the area threshold and the AI-generated insights. 

These results assist in identifying potential design issues or structural concerns, providing actionable recommendations for 

further evaluation or modification. 

The Footing Area Analysis Agent differs conceptually from the Solid Slab Area Analysis Agent by focusing on the 

relationship between columns and their supporting footings, rather than analyzing slabs independently for area thresholds. 

Accordingly, it analyzes the geometric properties of one element in comparison to the geometric properties of another 

element with which a relationship exists, and not geometric properties vs a user-defined threshold. The key distinction lies 

in this interdependency: the footing area must be proportionally sufficient to support the column, with specific warnings 

generated if this proportionality is not met (refer to Fig. 3). 
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Fig. 3: Footing Area Analysis Agent LangGraph 

 

The workflow begins by loading the specified IFC file, extracting the dataset into memory. This foundational step 

ensures that all required data for column and footing analysis is accessible. If the file cannot be loaded, the process halts 

with logged errors. Once the data is loaded, LangGraph proceeds to extract column and footing elements from the model 

using IfcOpenShell. For columns and footings with rectangular profiles, LangGraph calculates their areas by multiplying 

the dimensions and converting the results to square meters. After the area extraction, the compiled results, including 

column and footing names and their calculated areas, are sent to the Gemini model. The AI model processes this 

information and evaluates whether the footing areas are proportionally sufficient to support the corresponding columns 

(at least 2.5 times the column area). The AI generates insights, warnings, or recommendations based on the provided 

data, offering a detailed assessment of potential structural concerns or design issues. The process concludes with the 

output of the AI-generated recommendations and flagged footing-column issues, if any. This ensures that potential 

design flaws, such as insufficient footing dimensions, are identified and addressed early in the design process.  

The Multi-Agent Depth and Proximity Analysis Workflow uses a LangGraph with a Supervisor Architecture setup 

designed to analyze the structural details of an IFC file, with a specific focus on spatial relationships and differential 

settlement risks of foundation elements. At the core of the system is the top-level Supervisor Node, which orchestrates 

the entire workflow by determining which agents to use and in what order based on the analysis requirements. This 

supervisory control ensures that the process is both dynamic and adaptive, allowing for tailored execution of tasks. In 

this application, the model analyzes structural foundations based on height and proximity thresholds simultaneously, 

categorizes them into 3 risk groups, and responds to prompts in this context. Figure 4 shows the LangGraph of the Multi-

Agent Depth & Proximity Analysis Workflow.  

 

 
 

Fig. 4: Multi-Agent Depth & Proximity Analysis Workflow LangGraph 

The LangGraph begins with a Unit Check and Conversion Node, which ensures that all measurements within the 

IFC file are in metric S.I. units. This initial step establishes consistency for subsequent computations. The supervisor 
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then activates the Element Data Extraction Agent, which uses IfcOpenShell to parse the IFC file to extract crucial details 

about structural elements, including their geometries, spatial positions, and foundation depths. The extracted information is 

is formatted into a structured dataset for further processing. Next, the supervisor triggers the Proximity Analysis Agent, 

which calculates the clear distances between foundation elements. This agent evaluates whether the elements maintain the 

the minimum required spacing to mitigate potential risks. The supervisor's logic determines when to deploy this agent based 

based on the spatial data provided by the extraction process. Once proximity data is obtained, the supervisor decides to 

activate the Analysis Agent, which applies predefined thresholds to assess differential settlement risks. These thresholds 

include parameters for depth differences (h) and distances (d), with user-defined ranges categorizing risk levels into Low, 

Medium, and High. For example, Low Risk corresponds to h < 5m and d > 3m, Medium Risk to 5 < h < 7m and 2 < d < 3m, 

and High Risk to h > 7m and d < 2m. The supervisor allows for adjustments to these thresholds, enabling a customizable and 

precise risk assessment. Once all analyses are completed, the supervisor consolidates the results, synthesizing outputs from 

the individual agents into a comprehensive dataset. The final step involves activating the LLM Query Node, which interprets 

the combined data and provides insights or recommendations using a language model. This includes generating observations 

about foundation risks and suggesting potential mitigation strategies. 

 

5. Validation 
The validation strategy consists of two parts: first, each of the developed models was tested using 20 hypothetical case 

studies and the results were tabulated and analyzed to ensure that the models meet their intended use. The test case studies 

were sorted in order of size and complexity to test if the models’ performance is affected by the size and complexity of the 

BIM model being processed; refer to Fig. 5 (a). Next, each model was tested using an actual case study of a real-life project 

to test the functionality of the system and evaluate its performance in a real-life scenario. The construction project on which 

the models were tested was a large, irregularly shaped hotel building located in a coastal region.; refer to Fig. 5 (b). 

 

               
(a) Hypothetical Case  Studies       (b) Real-Life Case Study 

Fig. 5: Test Models for Validation 
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The performance of each LangGraph model was assessed based on accuracy, validity, and completeness of the 

response provided. Accuracy measures how closely the model's responses align with the true values. Validity evaluates 

whether the model's results are relevant and appropriately addresses the specific task or question at hand. Completeness 

assesses whether the model provides a full and comprehensive response, covering all necessary aspects of the problem 

or query. 

 

6. Results & Discussion 
The results of testing the models were collected and compared to manually obtained data, and a score of 0 to 1 (0% 

to 100%) was assigned. For the Element Analysis Agent, the test files were uploaded, and the model was asked “Can 

you provide details on columns elements?” The model’s responses were evaluated as shown in Fig. 6. 

 

 
                              Accuracy                                           Validity                                  Completeness 

Fig. 6: Element Analysis Agent Results 

 

The model demonstrated excellent performance in analyzing IFC files, achieving 100% accuracy across all file sizes 

and complexity levels by correctly identifying and counting IfcColumn elements. Its response validity was also perfect 

(100%), providing relevant and context-sensitive information, ranging from basic details to advanced inferences when 

necessary. While response completeness averaged 86.5%, with detailed outputs for smaller models and summarized data 

for larger ones, the responses remained informative and valuable. A real-life case study further validated the model’s 

effectiveness, as it successfully identified 707 column elements, verified unique Global IDs and Names, and accurately 

summarized key properties. Future improvements could enhance completeness, particularly for larger BIM models. 

For the Solid Slab Area Analysis Agent, the test files were uploaded, and the model was asked “Analyze the slabs 

and provide any issues with their areas.” The model’s responses were evaluated as shown in Fig. 7. 
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                               Accuracy                                           Validity                                  Completeness 
Fig. 7: Solid Slab Area Analysis Agent Results 

 

The model achieved high accuracy (98%) in identifying slabs exceeding the 36 m² threshold, but it encountered an 

isolated threshold misapplication error in ‘Test 6.ifc.’ While it correctly flagged slabs based on area, its reasoning was highly 

inconsistent, with a response validity score of only 40%. The model often applied incorrect thresholds, provided flawed or 

nonsensical justifications, or omitted reasoning altogether, highlighting the need for human oversight. Response 

completeness averaged 88%, with sufficient details in simpler BIM models but inconsistencies in complex scenarios. In a 

real-life case study, the model correctly identified slabs exceeding the threshold but failed to provide meaningful insights, 

indicating its limitations in handling complex projects. Improvements should focus on ensuring correct threshold application, 

refining error handling, and integrating a Human-in-the-Loop validation feature to enhance reasoning reliability. 

For the Footing Area Analysis Agent, the test files were uploaded, and the model was asked “Analyze the column and 

footing areas and raise any issues.” The model’s responses were evaluated as shown in Fig. 8. 

 

 
Accuracy                                           Validity                                  Completeness 

Fig. 8: Footing Area Analysis Agent Results 

 

The model accurately identified all foundation and column instances, achieving a 93% accuracy in flagging undersized 

foundations. However, it incorrectly flagged some foundations as "too large" in two cases, suggesting minor logical 

refinements are needed. Response validity scored 100%, as the model provided relevant insights and logical 

recommendations, demonstrating advanced reasoning beyond simple calculations. Response completeness was also 100%, 

as it consistently delivered comprehensive analyses, listing foundation-to-column area ratios and offering design 

improvements. In a real-life case study, the model successfully analyzed foundation sizing but encountered network-related 

limitations (HTTP 429 errors), preventing further assessments. This highlights the need for optimized querying and better 

error handling for large-scale applications. 

As for the Mult-Agent Depth & proximity Analysis Workflow, the test files were uploaded, and the model was asked 

“Please confirm the number of high-risk foundations” followed by “Provide recommendations based on this data.” The 

model’s responses were evaluated as shown in Fig. 9.  
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                                    Accuracy                                           Validity                                  Completeness  

Fig. 9: Footing Area Analysis Agent Results 

 

The model accurately identified all high-risk foundations in every test case, achieving 100% accuracy in risk 

detection. It successfully classified foundation risks and provided mostly relevant recommendations, scoring 60% in 

response validity. However, in cases ‘Test 8.ifc’ to ‘Test 20.ifc’, network-related errors prevented the model from 

generating recommendations, impacting response completeness, which averaged 51%. The real-life case study 

confirmed that connectivity issues were likely triggered by the high number of design issues rather than model size or 

complexity. This suggests that the model can handle large BIM files but struggles when excessive risk cases increase 

response times. 

The validation process across multiple cases has revealed important insights into the performance of the applications 

of the proposed approach for analyzing IFC data using LLM through LangGraph. The developed models (focused on 

element analysis, slab area analysis, footing area analysis, and multi-agent depth and proximity analysis) demonstrated 

strong potential for real-world applications, while also highlighting specific limitations that could impact their use in 

practical scenarios. Fig. 10 summarizes the models’ performance across the 3 evaluation criteria. The heatmap shows 

that most of the models achieved impressive accuracy and completeness, showcasing their effectiveness in analyzing 

BIM data and providing actionable insights. These strengths demonstrate the potential of LangGraph to enhance BIM-

based decision-making and project outcomes. However, some models faced challenges in validity, indicating 

opportunities for improvement in reasoning and contextual understanding. This variation in scores emphasizes the need 

for ongoing refinement to further enhance the models' capabilities and improve their reliability. 

 

 
Fig. 10: Performance Heatmap of the LangGraph Models 
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The LangGraph method offers high accuracy in identifying structural concerns and generating actionable insights, aiding 

aiding decision-making and improving project outcomes. However, limitations in reasoning validity and response 

completeness, especially in complex scenarios, affect its reliability. While well-suited for small to medium-scale projects, 

projects, human verification remains essential for accuracy. Future improvements should focus on refining reasoning and 

and completeness to enhance applicability in larger projects. Despite its challenges, LangGraph shows strong potential for 

BIM analysis, and further development could significantly impact project success. 

 

7. Conclusion 
This study presents a novel methodology for automating the analysis of Building Information Modeling (BIM) data 

using LangGraph and Google’s Gemini Large Language Model (LLM) in combination with IfcOpenShell. By leveraging a 

multi-agent system, the proposed framework enables efficient querying and analysis of IFC data without reliance on 

traditional BIM software. The research demonstrates the feasibility of using AI-driven approaches to extract, analyze, and 

interpret BIM data, providing valuable insights for construction professionals. The validation of the developed models across 

both hypothetical case studies and a real-life project confirmed their effectiveness in analyzing BIM data, particularly in 

element extraction, slab and footing analysis, and spatial risk assessment. The models exhibited high accuracy and 

completeness, successfully identifying critical design issues and generating actionable recommendations. However, certain 

limitations were observed, particularly in reasoning validity and response completeness when handling complex queries or 

large-scale models. Network-related constraints also impacted on the system’s ability to process extensive datasets in real-

world applications. While the findings highlight the potential of LLM-based BIM analysis, they also underscore the need for 

further optimizations. Enhancing reasoning accuracy, improving response completeness, and implementing robust error-

handling mechanisms will be crucial in refining the system’s reliability. Additionally, integrating Human-in-the-Loop 

validation and optimizing the framework for large-scale projects can enhance its practical applicability. Despite these 

challenges, the proposed methodology represents a significant step forward in automating BIM data analysis. With further 

advancements, AI-driven BIM analysis tools have the potential to improve decision-making, streamline workflows, and 

enhance project outcomes in the construction industry. 
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