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Abstract - In this paper, using wavelet scalograms and coscalogram of concurrent biomedical signals we were able 

to detect their short-lived temporal interactions. The complete analysis should include investigation of signal 

coherence in amplitude and phase. This is achieved with a continuous complex wavelet transform. Thus, in the 

algorithms developed, we use the Morlet wavelet transform and some measures based on scalograms and 

coscalograms. The algorithms have been developed that assist in quick and simple data analysis.  Our analysis gives 

an indication of the cross-correlation of signals in time and frequency domain. The simultaneously recorded 

biomedical time series signals used, come from MIMIC database. The determined time shift between these signals, 

that we used to obtain adequate correlation results, may also be useful to determine various delays or information 

transmission times in human system. 
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1. Introduction 
 Wavelet Transform, in particular Morlet Wavelet Transform (MWT), allows multiresolution analysis 

in time-frequency domain of a non-stationary, transient signal, meaning that fine details of a signal can be 

detected and localized which is not possible with Fourier Transform or windowed Short Time Fourier 

Transform.  Wavelet scalogram measures the local time-frequency energy density of a signal and 

provides valuable information about the behavior of the system over time.  For example, Addison et al. 

(2002) used Morlet Wavelet Scalogram (MWS) to detect a previously unknown coordinated contractility 

behavior of the atrium during ventricular fibrillation, a phenomenon which is not captured in a normal 

electrocardiogram.  Likewise, coscalogram measures the cross-energy density between two different 

signals at different frequency bands and provides a meaningful information about the effect of the two 

processes on the status of a system under interrogation, e.g., Kelley et al. (2001, 2005) used Morlet 

Wavelet Scalogram and Coscalogram to examine the initial stiffness degradation of the wind turbine 

blades that was found to be primarily due to early presence of high frequency energy that causes 

excitation of higher structural modes, leading to response coupling and energy exchange between modes.  

Similar applications of the MWT can also be found in González et al. (2008) and Bialasiewicz et al. 

(2013).  The aforementioned application of wavelet scalogram and coscalogram analysis motivated this 

paper which is focused more on the analysis of the biomedical signals with an objective of finding 

meaningful information about the physiologic and disease process by examining the scalograms and 

coscalogram and therefore relationship between two different biomedical signals. 

 In particular, we present some software tools whose algorithms are programmed in MATLAB and 

represented as MATLAB’s GUI that assists in quick and simple data analysis for obtaining meaningful 

information on interaction dynamics of concurrent processes. These tools are capable of detecting the 
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short-lived temporal interactions. The investigated processes may be represented by concurrent recordings 

obtained at distant points of a complex dynamic system such as 
 

 human brain in which, using EEG recordings, you would like to investigate the interaction 

dynamics between two anatomically distinct neuronal populations; 

 human body in which you would like to examine the relation between respiratory rate and the 

electric impulses  generated by a group of muscles and recorded as electromyography (EMG); 

 Human body in which you would like to examine the relation between electrocardiographs 

(ECG) and blood pressure (BP) measurements over the same time period. 

  

 Using the data that represent investigated processes, our software calculates MWT scalogram and 

coscalogram and generates graphical presentation of the results. These results enable the qualitative 

evaluation of interaction dynamics of investigated processes. In addition, the implemented algorithms 

provide quantitative evaluations of interaction dynamics. These are the following measures: 

 

 Wavelet Local Correlation Coefficient (WLCC) 

 Cross Wavelet Coherence Function (CWCF) 

 Wavelet Coherence (WC) 

 Wavelet-Based Bicoherence (WBC) 

 

 And applications of these measures can also be found in Grinsted et al. (2004), Mohamed (2006), 

Lachaux et al. (2002), Wolfgang et al. (1999), Sanchez et al. (1995), and Li et al. (2007). Graphical User 

Interface (GUI) enables the user to load two processes under investigation, make choice of the required 

processing parameters and then perform the analysis. All obtained results are represented in a graphical 

window (Gross, Bialasiewicz, 2015).  However, the time delay between the investigated processes was 

not considered. This has been the topic of research whose results are reported in (Sukiennik, Bialasiewicz, 

2015). In this paper, calculation of the coscalogram, based on the time-delay-corrected convolution of 

continuous wavelet transforms, was introduced. It provides detailed information about the interaction of 

signals in the time-frequency domain. 

 

2. Background on Scalogram and Coscalogram 
 
2. 1. Morlet Wavelet Transform  

 Wavelet Transform is superior to the Fourier Transform and the Short Time Fourier Transform 

(STFT) because of its ability to measure the time-frequency variations in a signal at different time-

frequency resolutions.  Fourier Transform contains globally averaged spectral information. Thus, the 

transient spectral information is lost.  The Heisenberg boxes in time-frequency domain illustrate the 

multiscale zooming property of the Wavelet Transform wherein boxes or rectangles of detail coefficients 

at higher frequency components of the signal span have shorter time duration whereas those at lower 

frequency components have wider time span. 

 In our applications, the wavelet scalogram and coscalogram is based on the continuous Morlet 

Wavelet Transform (MWT). The time series of investigated processes are analyzed on the time-scale or 

time-frequency plane using the MWT. Morlet wavelet that is a Gaussian-windowed complex sinusoid 

gives (due to the Gaussian’s second order exponential decay) good time localization. The MWT is 

defined as follows: 
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 , x is the analyzed signal, and s is the scale.  

 The wavelet transform of a continuous time-dependent signal, x(t), correlates the function under 

interrogation with a wavelet function,  , at the scale ‘s’ and position ‘τ’.  The Wavelet coefficient,

),( sWx , represents x(t), and its Fourier transform  in the time-frequency region where the energy of the 

wavelet atom, )(, ts , and its Fourier transform )(ˆ
,  s  are concentrated.  As such, analysis of phase 

and amplitude information of signals, over time, requires use of a complex analytic wavelet which has 

properties of analytic signal, i.e., the Fourier transform of the given wavelet function is zero for 0 .  

This indicates that energy of )(ˆ  is concentrated over a positive frequency interval centered at 0B  and 

the energy of )(ˆ
,  s  is concentrated over a positive frequency interval centered at the center frequency

sB /0 . In the time-frequency plane, the wavelet atom, )(, ts , is represented by a rectangular box 

centered at )/,( 0 sB  whose area represents the energy spread of the wavelet atom with the standard 

deviation t defined by the following equation: 

 

dtttt 




 )(22                    (2) 

 

 As such, time varies with ‘s’ whereas frequency varies with ‘1/s’, i.e., the Heisenberg box in the 

time-frequency plane has a dimension of ts along the time-axis and s/  along the frequency axis.  

As the scale, s, varies, the height of the rectangle, representing the frequency components, changes and so 

does the width that represents the time component while the area of the rectangle remains constant, i.e., 

the energy is conserved. 

 

2. 2. Scalograms and Coscalograms 
 A local time-frequency energy density, which measures the energy of x in the Heisenberg 

box of each wavelet s, is known as wavelet scalogram 

 
2
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      A local time-frequency energy density, which measures the cross-energy of two processes (that 

identifies their local correlation), known as wavelet coscalogram, is defined as follows:  

 

),(),(),(  sWsWsxyP yxW

                (4) 

 

3. Using Scalograms and Coscalogram for Biomedical Signals Analysis 
 
3. 1. Direct Applications of Scalograms and Coscalograms 
 Figure 1 that gives graphical illustration of scalogram and coscalogram was created using the time 

series of the electrocardiogram (ECG) and Arterial Blood Pressure (BP) signals obtained from 

Multiparameter Intelligent Monitoring in Intensive Care (MIMIC) Database (Goldberger, et al., 2000), 

made freely available on PhysioNet website (http://physionet.org/). MIT’s PhysioNet is part of the project 

whose goal is to provide easy to use tools to access physiological data. MIMIC database contains high-

resolution recordings of multi-parameter data coming from monitoring critically ill patients in intensive 
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care units. Database has been made publically available to support research community for researchers 

that do not have access to the medical environment. 

 In the plot presented in Fig.1, one can see ECG and BP signals, along with their scalograms and 

coscalogram. It is visible that two (framed) events, visible in the scalogram of ECG, have corresponding 

reaction in BP scalogram, but with some visible time delay. Therefore, in order to accurately represent the 

relationship between the analyzed signals, this delay has to be determined. The coscalogram presented, 

does not take into account this time delay. Also, if you exam the spikes in time-domain representation of 

both signals superimposed, you can see the mismatch. It is also reflected in the green box on the 

coscallogram (corresponding to high frequency range). This problem was investigated and genetic 

algorithm was employed to determine the delay (Sukiennik, Bialasiewicz, 2015).  

 

 
 

Fig. 1.  ECG and BP signals, scalograms and coscalogram. 

 

 For the particular example, illustrated in Fig. 2, the delay of 2.386 seconds was determined. So, the 

BP signal was delayed by 2.386 seconds to obtain alignment of the associated events in the ECG and BP 

signals. 

 The results shown in Fig. 2 clearly present correlation of events due to the alignment of the analyzed 

signals. Specifically, the corresponding parts of scalograms in the red time-frequency boxes show more 

consistent correlation. There is also visible series of events in high frequencies (10 – 36 Hz) of 

coscalogram (marked with a green box) that are not visible on the corresponding not optimized 

coscalogram in Fig. 2. 

 Besides the fact that using the genetic algorithm it was possible to determine the delay and align the 

corresponding events, this method may be of interest to determine different time delays in the human 

system in order to investigate differences between ill and healthy people and actually to diagnose a 

particular disease. 
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Fig. 2.  Time delay optimized (BP signal delayed by 2.386 seconds)  

       

3. 2. Indirect Applications of Scalograms and Coscalograms 
 In Section 3.1, we described procedures that use directly scalograms and coscalogram to establish 

existence of some relations between investigated processes that may find numerous applications in the 

analysis of biosignals. In this section, we shall present some quantitative measures of time-varying 

correlation measures of biomedical signals along with their graphical presentation that can be obtained 

using Matlab’s GUI, presented in (Gross, Bialasiewicz, 2015) along with their mathematical descriptions, 

implemented in the algorithms. These measures have already been briefly introduced in Section 1. These 

are: WLCC, CWCF, WC, and WBC. 

 In Fig. 3, we illustrate two techniques to measure the correlation between two signals by using 

Wavelet Local Correlation Coefficient (WLCC) and Cross Wavelet Coherence Function (CWCF). Figure 

3a shows the WLCC, which is the phase correlation. Notice the long stripes in the lower frequency bands 

(1.3 < f <3.0 Hz), which are within the same frequency region as that seen in the coscalogram of Fig. 1. 

These stripes indicate that the signals have a phase correlation throughout the entire time series within 

these lower frequencies. Figure 3b gives the CWCF, where the color intensity represents the amplitude 

coherence. Again, the most intense portions are within the lower frequency band, and the intense regions 

match the events that can be noticed in Fig. 1. 

 In Fig. 4, we see the representation of the wavelet bicoherence over the total time, during consecutive 

events that can be noticed in Fig. 1. For all events, the bicoherence is relatively low (< 0.2), which shows 

that there is not a strong phase coupling or non-linear interaction. 
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Fig. 3.  a) WLCC image, where the color represents the phase coherence between the ECG and BP signals, 

b) CWCF image, where the color represents the amplitude strength of the coherence between the ECG and BP 

signals. 

 

 
 

Fig. 4.  Images a) through d) show the wavelet bicoherence over: the total time, during Event 2, during Event 3, and 

during Event 4, respectively. The bottom axes represent the ECG signal frequencies and the left axes represents the 

BP signal frequencies 
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3. 3. Indirect Applications of Scalograms and Coscalograms 
 Matlab GUI is very useful when analyzing two time series signals several times with different 

parameter settings. Figure 5, upper part, shows the screenshot of the GUI running while plotting, the time 

series data, the scalograms, and the coscalogram. Adjusting the time or any other parameter is very 

simple, in that users can change any parameter they choose, then press the button for the plot they would 

like created. Figure 5, lower part, presents another example that is the GUI running when plotting the 

wavelet coherence. Also, the WC and WB plots are created to use Matlab's parallelization function, but 

the GUI does not initiate the pool itself. Rather, the pool must be initiated by the user at the command 

line, along with closing the pool when finished. 

 

4. Conclusions 
 This paper has used an ECG data set and a BP data set to show multiple continuous wavelet analysis 

techniques that can be used at Matlab's command line or using Matlab's GUI. When signals are dynamic 

over time, it is advantageous to use wavelet analysis instead of Fourier analysis. Wavelet analysis is able 

to maintain temporal characteristics whereas Fourier analysis removes the temporal characteristics.  

 
 

Fig. 5.  Screenshots of GUI plots: time series data, scalograms, coscalograms (upper), wavelet coherence (lower) 
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 It has been pointed out that these multiple techniques reveal interaction dynamics of time-varying 

signals (e.g., ECG and BP time series signals) and how they can be correlated both in amplitude and 

phase along with phase coupling and non-linear interactions. Analysis results presented in Figures 1 and 2 

show strong coherence between the ECG and BP signals, both in amplitude and phase, and document the 

necessity to determine the time shift or delay between the investigated signals in order to show more 

consistent correlation of visible events. 

 Besides the fact that using the genetic algorithm it was possible to determine the delay and align the 

corresponding events, the obtained results  may be of interest to determine different time delays in the 

human system in order to investigate differences between ill an healthy people and actually to diagnose a 

particular disease. 
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