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Abstract- In Wireless Sensor Network (WSN), the centralized methods for training support vector machine (SVM) 

by all training samples, which are distributed across different nodes and transferred to the fusion centre (FC) by 

multi-hop routing, will significantly increase the communication overhead and energy consumption. To solve this 

problem, a novel distributed training algorithm for linear SVM which based on liner kernel function is proposed, 

which splits the training process of SVM into two phases: the local training phase and the global consensus phase. In 

the local training phase, aiming at minimizing the difference between each node’s local classifier parameters and its 

local optimal ones which are obtained by exchanging the local classifier parameters with its all neighbours , the 

quadratic programming (QP) problem of training SVM is derived and solved by using the Lagrange multipliers 

method. Each node trains its local SVM iteratively until converges. In the global consensus phase, the same 

classifier parameters can be achieved on each node by using the global consensus algorithm, which relying on the 

exchanges of final training results on each node between neighbours. Simulation experiments illustrate that the 

proposed algorithm has better convergence and remarkable advantage in the amount of data transmission comparing 

with the existing algorithms. 
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1. Introduction 
 As one of the most popular and effective statistical learning method, Support Vector Machine (SVM) 

has been successfully applied in pattern recognition and classification. In recent years, with the increasing 

applications of wireless sensor network(WSN), SVM is more and more used in WSN，as shown by 

Jones et al. (1989),  Liu et al. (2013),  Aswathy et al. (2012). In WSN, training samples are scattered 

across different sensor nodes. If each node transfers its local training samples to the central fusion centre 

(FC) by multi-hop transmission, a more accurate SVM classifier can be obtained by all the training 

samples in FC. However, this centralized method for training SVM will significantly increase the 

communication overhead and energy consumption. It contradicts the strictly constraints on bandwidth and 

energy of WSN and brings the congestion in the nodes around FC. In addition, in some applications 

which require privacy protection, this training approach is not permitted because of the transmission of 

training samples. In order to avoid and solve above problems, the distributed training approach for SVM, 

which only relying on the collaboration between neighbour nodes, is initiated and has attracted more and 

more interest of the researchers.  

 In recent years, a lot of research works on distributed learning approach for SVM in WSN have been 

paid a special attention to and obtain some research achievements. Flouri et al. (2006) and Flouri et al. 
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(2009) have proposed an incremental algorithm for distributed (D) SVM , its main idea is that the SVs at 

each clusterhead is obtained by training the SVs passed by the previous clusterhead and its local training 

samples, and then transmitted to the next clusterhead. After only a complete pass through all the clusters, 

a separating plane is obtained and as an approximation of the centralized one obtained as if all training 

samples were centrally available. But this algorithm can’t converge to the centralized SVM classifiers 

because of using only a pass through all the clusters, and if there are a lot of SVs obtained from each 

cluster, communication overhead will be costly. Forero et al. (2010a,b) have proposed a distributed SVM 

training algorithm MoM-DSVM based on consensus, which decomposes the centralized linear SVM 

problem into a set of decentralized convex optimization sub-problems (one per node) with consensus 

constraints on the classifier parameters of neighbor nodes, and then fully distributed iterative formula are 

derived using the alternating direction method of multipliers. This distributed algorithm is performed 

recursively by exchanging their local classifier parameters among the neighbor nodes, so the overhead 

associated with inter-node communications is fixed and solely dependent on the network topology. 

However, due to only rely on the collaboration of the neighbor nodes, the convergent speed of the 

algorithm is low, and its convergent accuracy also needs to be improved. In addition, for solving the 

training problems of SVM with large training set or distributed data set, many distributed or paralleling 

algorithms for SVM were proposed as shown by Lu et al. (2008), Wang et al. (2009) and Kim et al. 

(2012). However, all the nodes can communicate directly to one another and the communication cost and 

energy consumption in the data transmission has not been considered in these algorithms. 

 Therefore, this paper presents a novel distributed training approach for linear SVM which is inspired 

by the idea of the local computation and global communication in distributed algorithms. In this 

approach, the training of SVM is divided into two phases: the local training phase and the global 

consensus phase, each phase to use different optimization strategies. In the local training phase, by 

exchanging its local classifier parameters with its all neighbor nodes, each node trains its local SVM 

iteratively until converges. In the global consensus phase, consensus can be achieved on each node by 

using the global consensus algorithm, which relying on the exchanges of final training results on each 

node between neighbor nodes. The rest of this paper is organized as follows. The proposed distributed 

algorithm for linear SVM, including the basic ideas, solution technique and derivation, and the realization 

of algorithm, is described in Section II. Then, the simulation experiments and results are provided in 

Section III. Finally, Section IV presents the concluding remarks and the future work. 
 

2. Distributed Linear SVM 

 Given a training set 1{( , ) | }d n

i i i iS x y x R   , where ix is an d dimension observation vector,

{ 1,1}iy   is the class label of ix ,and n  is the size of S . Training a SVM is to find an optimal separating 

hyper-plane that separates two classes training examples in S with maximum margin, and this problem 

can be formulated as a constrained quadratic programming (QP) problem.  

 In WSN, all training samples are scattered across different nodes and the number of training samples 

in each node is likely to be different. Therefore, for the linear separable problem, this research adopts the 

form of quadratic programming problems for linear SVM given in Scholkopf, Smola. (2002), such as 

shown (1):  
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Where dw R  is the normal vector to the hyperplane, b R is the bias of the hyperplane from the 

origin, i are slack variables that permit margin failure , C  is a parameter which trades off wide margin 

with a small number of margin failures and n is the size of training samples. 

Consider a WSN with J sensors, any node j J  only communicates with its one-hop neighbor 

nodes, and all the neighbor nodes of node j is denoted by jB J . Assumed that there is at least one path 

between any two nodes, i.e., all the nodes in WSN are connected. At each node j J , only part of the 

training set is available and is denoted by   :   ,   :    1,...,  j jn jn jS x y n N   ,where jN is the number of 

training samples in jS . Following the formula (1), only with local training samples, the training of SVM 

on each node can be expressed as formula (2). 
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 Where jw  and jb  denote local variables defining a local linear classifier at node j , and other 

variables have the same meaning as are respectively assigned to them in the formula (1). It should be 

noted that the value of C  in each node is same. 

 In order to reduce the transmission of a large number of data in training process of SVM, the 

collaboration between neighbor nodes only by exchanging the local classifier parameters is adopted in 

this research. A consensus result is obtained in each node by the collaboration between neighbor nodes. 

This problem may also be viewed as finding an optimal solution in the intersection of each node local 

constraints. As a result, this problem can be equivalent to looking for the minimum distance between the 

optimum and the local optimum at each nodeas shown by Bertsekas, Tsitsiklis (1997). Based on this idea, a 

quadratic term is added to the cost function of (2), the resulting formula is shown as (3): 
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 Where 
*

jw  is the local optimum of node j , which relies on the intersection of node j ’s local 

constraints and its neighbor nodes’ local constraints. Because only the local classifier parameters are 

exchanged among neighbor nodes, this paper adopts the local consensus algorithm to obtain the local 

consensus of  
*

jw , the form is shown as (4). In order to solve the optimization problem (3), the Lagrange 

multipliers method and dual theory are used. The iterative formulas are derived and shown as (5) and (6). 
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*

( 1) 2 [ ( 1) ( 1)]T
jj j jw t w t A t                                                             (6) 

 In (4), max0 1/ d  is a positive scalar parameter, and maxd is the maximum degree of the 

undirected graph for WSN. In (5), 
1

, , 1,...,
jN

j jn jn j

n

A y x j J n N


    is the coefficient matrix composed 

of the training samples. ( 1)j t  is a quadratic programming problem and contains only a single variable, 

it can be solved by the traditional quadratic programming method. Now the above iterative steps can be 

executed in parallel on each node, and the local optimum on each node can be achieved through a few 

iterations. 

 The resulting SVM training results are very close but not entirely consistent. Hence, in global 

consensus phase, the consensus algorithm is used to achieve the global consensus on the local training 

result of each node. In WSN, consensus is one of fundamental tools to design distributed decision 

algorithm that satisfy a global optimality principle, as corroborated by many works on distributed 

optimization as shown by Sardellitti et al. (2010). In this research, the simple flooding algorithm for 

global consensus is adopted. In this algorithm, each node can store the values from its neighbour nodes 

and forward the received values to its neighbour nodes. All nodes know all values of other nodes in a 

number of steps equal to the diameter of the graph, then each node can compute the average consensus. 

  The above training for SVM splits the training process into two phases: the local training phase and 

the global consensus phase. In the local training phase, by exchanging its local classifier parameters with 

its all direct neighbor nodes, each node trains its local SVM iteratively until converges. In the global 

consensus phase, consensus can be achieved on each node by using flooding algorithm for global 

consensus, which relying on the exchange of final training results on each node between neighbor nodes. 

Based on this training process, this paper presents a novel two-phase distributed training algorithm for 

Linear SVM ( short as TTL-DSVM), and the overall algorithm proceeds as indicated in TTL-DSVM 

Algorithm. 

 TTL-DSVM Algorithm: 

 Step 1: set k=0,  equal to a small positive value and initialize jw [0], j  

 Step 2: Set k=1; 

 Step 3: Repeat until local convergence 

         Compute 
*

jw [k], j ,  using (4) ; 

         Compute j [k], j ,  using (5); 

         Compute 
jw [k], j ,  using (6); 

         Broadcast 
jw [k] , j ,  to its neighbors; 

 k=k+1； 

 Step 4：Run global consensus on *

jw  and *

jb , j using flooring algorithm. 

 

3. Numerical Simulations 
 
3. 1. Test case 1: Synthetic Data 

 Consider a randomly generated WSN with J  = 30 nodes and algebraic connectivity 0.0896. The 

training sets are generated artificially by two different classes random vectors drawn from a 2-

dimensional Gaussian distribution with N(2,2,5,5,0) and N(22,2,5,5,0) respectively. Each class of training 

sets has 600 examples, which are assigned equally to each node of WSN without repeating assignment for 

examples, thus, each node can acquire 20 examples from each class of training sets. TTL-DSVM has been 

compared with the centralized SVM( C-SVM) where all the training examples are available, and MoM-

DSVM as shown by Forero et al. (2010a,b) in the convergence results and the amount of data transferred. 
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 In Figure 1, two classes of training samples and three decision classification lines obtained by 

performing C-SVM , TTL-DSVM and MoM-DSVM are shown. Table 1 shows the values of three 

decision classification lines. As can be seen from three decision classification lines and their values, TTL-

DSVM can converge to the results of  C-SVM,  and MoM-DSVM can obtains the same result of C-SVM 

in weight vector w  , but there is significant different between the results of b  of MoM-DSVM and C-

SVM. 

 

  
 

Fig. 1.Two groups of samples and three decision classification lines obtained respectively by C-SVM, TTL-SVM, 

and MoM-DSVM in Synthetic Data 

 

Table. 1. The  
*w and

*b for C-SVM, TTL-DSVM, MoM-DSVM in Synthetic Data 

 

Algorithms *w and
*b  

C-SVM * 0.3816 0.009( )1 Tw   ， ； * 0.1858b   

TTL-DSVM * 0.3816 0.009( )1 Tw   ， ； * 0.1856b   

MoM-DSVM * 0.3816 0.009( )1 Tw   ， ； * 0.1956b   

 

 Figure 2 shows the amount of data transferred in iteration process of C-SVM, TTL-DSVM and 

MoM-DSVM. The amount of data transferred of TTL-DSVM is 95.09% less than that of C-SVM, and 

43.3% less than that of MoM-DSVM. 

 

3. 2. Test case 2: Wine Quality Dataset 
 In this case, TTL-DSVM is tested on the Wine Quality Dataset shown by Cortez et al. (2009). 

Specifically，we use the white wine dataset, which has 11 attributes, 4898 instances and 7 qualities. The 

binary problem of classifying quality 5 versus quality 7 is considered using a nonlinear classifier. 600 

training samples per quality and a test set of 280 samples per quality are taken. Since the obtained 

classification hyperplane cannot be easily viewed on two-dimensional plane, three components of weight 

vector   and the threshold   are chosen to show their iteration processes and convergent results for C-SVM, 

TTL-DSVM and MoM-DSVM, as shown in Figure 3. The Communication costs for C-SVM, TTL-

DSVM and MoM-DSVM in Wine Quality data set are shown in Figure 4, 
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 In Figure 3, the three components of w , namely 1w , 3w , 5w , and b  for TTL-DSVM have all 

converged to the results of  C-SVM respectively with higher speed. The convergent results of 1w , 3w , 5w

for MoM-DSVM are well close to the results of  C-SVM respectively, but there is significant different 

between the results of b  for MoM-DSVM and C-SVM. 

 
 

Fig. 2. The amount of data transferred for C-SVM, TTL-DSVM and MoM-DSVM in Synthetic Data 

 

 

Fig. 3. The iterative processes and convergent results of components of 
*w and

*b for C-SVM, TTL-DSVM and 

MoM-DSVM in Wine Quality dataset 
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 In Figure 4, the amount of data transferred for TTL-DSVM is 82.39% less than that for C-SVM, and 

33.68% less than that for MoM-DSVM. 

 
Fig. 4. The amount of data transferred for C-SVM, TTL-DSVM and MoM-DSVM in Wine Quality dataset 

 

4. Conclusion 
 This work developed a novel distributed training algorithm for linear SVM in WSN, which is 

inspired by the idea of the local computation and global communication in distributed algorithms and uses 

the parallel optimization techniques. The proposed algorithm TTL-DSVM divides the training process of 

SVM into two phases. In each phase, each node only exchanges the parameters of its local classifier with 

its all direct neighbour nodes. Simulation results show that under the same experimental conditions, the 

convergent results of TTL-DSVM is almost the same as those of C-SVM, especially, TTL-DSVM has an 

obvious advantage in the amount of data transferred compared with C-SVM and MoM-DSVM. TTL-

DSVM algorithm provides an effective distributed training approach for linear SVM in WSN. In the 

future work, TTL-DSVM will be extended to solve the nonlinear SVM problems in WSN. 
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