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Abstract- Stereo matching is a traditional method used to obtain three-dimensional depth information and has been
studied for decades. However, it is still difficult to apply stereo matching algorithms to real-time systems because
of its heavy computation requirements. A stereo matching implementation of an FPGA system with high-resolution
images uses a significant amount of logic and memory. When implementing stereo matching in FPGA, factors that
determine the size of logic and memory required are the resolution of the images and the disparity levels. In this paper,
we present a spare cost computation method to implement a stereo matching system on FPGA by dropping disparity
levels. In addition, using a subpixel estimation and filtering method to calculate the dropped disparity levels, we present
an effective method to regenerate the costs. In addition, the performance and resource usage of the proposed method
is compared with that of conventional methods.
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1 Introduction

A high resolution stereo matching algorithm is not easy to implement in real time because of the amount of calculation
required (Jeong et al., 2013). Recently, real-time implementations using a variety of hardware have been proposed that
use recent hardware technologies (e.g., Field Programmable Gate Arrays(FPGA) and Graphic Processing Units(GPU))
and simple and efficient algorithms (Ding et al., 2011; Mattoccia, 2013; Cuong and Jeon, 2013). The computable
distance in stereo matching is determined by specifications such as the focal length of lenses, size of image sensors,
and baseline between cameras. As the disparity levels increase, it is possible to estimate a greater range of distances.
Moreover, in order to increase the resolution of the depth map in a system with the same specification, it is necessary
to calculate large disparity levels using input images with a high resolution. For example, if the highest disparity level
is 64 in a system that uses 640x480 VGA images, this disparity level must be 128 to obtain the same depth map in a
system that uses 1280x960 images.

However, because memory transfer and computational complexity increase as the disparity levels increase, execu-
tion time grows in a system using hardware accelerators such as GPUs. In FPGA, in order to increase the parallelism,
it is necessary to design more computational units proportional to the increase in disparity levels. After all, this is the
cause of the increase in the consumption of logic and memory. In particular, if the system uses a cost aggregation
system based on the adaptive weight kernel that is commonly used in recent local optimization methods, it requires a
saving of cost volume, although there are differences in size according to the algorithm used. The adaptive support
weight (ASW) method requires only the number of lines corresponding to the size of the window to be saved to mem-
ory. On the other hand, for information permeability filtering (PF), the whole cost volume should be stored. In the case
of modified PF (MPF) (Chang et al., 2014), the version that has been simplified for FPGAs needs memory for saving
the cost volume of two lines. For these reasons, many studies use small disparity levels or a simplified version of the
original algorithm. This also leads to a decrease in performance. Alternatively, some researchers use powerful hard-
ware (i.e., large, costly FPGAs) to solve this problem while maintaining performance (Chang et al., 2014). Therefore,
as disparity levels reduce, it is possible to implement additional algorithms and use affordable hardware.
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This paper is structured as follows. In Section 2, we introduce the stereo matching algorithm that is used to evaluate
the performance of our approach. In Section 3, we introduce our main idea to reduce disparity levels and propose how
to address the errors caused by skipped disparity levels. In Chapter 4, the proposed method is analyzed using the
Middlebury images and compared with existing fully implemented algorithms. The results show that the proposed
method effectively reduces the logic and memory required in the FPGA.

2 Stereo matching algorithm

In this section, we introduce an appropriate stereo matching algorithm for evaluating methods that use sparse disparity
levels. According to Scharstein’s taxonomy, stereo matching algorithms are distinguished by global and local matching
and their disparity computation method (Scharstein et al., 2001). Many implementations of global matching were
proposed in order to obtain high performance before 2006 (Hosni et al., 2013). However, since Yoon and Kwon’s ASW
method was proposed (Yoon and Kwon, 2006), most proposals in recent years have used local matching. Recently, even
when using a GPU or FPGA for real-time processing, stereo matching systems implement a local matching algorithm
based on a simplified ASW because of its computational complexity(Ding et al., 2011). Fig. 1. shows an overall block
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Fig. 1: Overall block diagram of the proposed stereo matching algorithm
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2.1 Cost computation

The matching cost computation is the initial cost computation of the stereo matching algorithm. In this paper, we
calculate the raw cost volume using the absolute difference (AD)-Census. The reason for combining the AD and
Census Transform (CT) cost measures is that AD-Census provides better matching accuracy than either the AD or CT
measures individually (Zabih and Woodfill, 1994). In addition, this combined method is robust in actual environments
because of using both parametric and non-parametric methods. In this study, we use cost combining with alpha-
blending for the AD-Census.

After Yoon et al. used the ASW approach for cost aggregation, many studies have used a similar cost aggregation
method. Cigla and Alatan (2011) proposed PF as an approach to ASW. PF has simple parameters and calculates
adaptive-weighted aggregation of cost values in constant operational time. However, because there is no proximity
weight term, PF can encounter problems with images that contain large untextured regions. Hence, MPF, which
includes a proximity weight term, was proposed by Chang et al. (2014).

2.2 Disparity selection and sub-pixel estimation

Disparity computation involves the calculation of disparity that has been properly matched with the results of the raw
cost calculation. Typically, a window with a support weight uses the winner-take-all (WTA) method to select the
disparity in minimum aggregated cost when calculating cost volume. Our proposed system uses WTA as the disparity
computation because it is a very simple algorithm.

In this paper, sub-pixel estimation is done via local minimum finding using quadratic fitting. This is a classic
approach to estimating sub-pixel disparity, although applying it directly to disparities can lead to severe biases (pixel-
locking). However, quadratic fitting is simple to compute. In addition, it is very easy to apply to the point unit results
in the FPGA.
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3 FPGA reduction

This section describes a method for reducing FPGA resources (e.g., logic and memory) for the algorithm described in
Section 2. In general, FPGA resource usage is affected by the disparity levels. For this reason, a method to reduce the
disparity levels is described. In addition, we discuss how to estimate the omitted disparity levels.

3.1 Disparity and depth relation

As shown in Fig. 2., disparity values are inversely proportional to depth. Hence, when a disparity level increases by
one, the depth increases at a different rate that depends on the disparity value. For example, an increment of one
disparity level at a disparity of 64 is equal to about 5.5 cm in depth in a stereo matching system (specifications baseline
=15 cm, focal length = 8 mm and pixel pitch of CMOS = 5.3 um). On the other hand, a change of one disparity level
at a disparity of 123 is equal to about 1.5 cm in depth in the same system.
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Fig. 2: Relationship between disparity and depth

Generally, for a required measurement range and accuracy, a stereo system will be designed with specifications
that satisfy these requirements. However, shorter distances will exceed the required accuracy and the accuracy of the
system reduces for larger distances. Given this phenomenon, we calculate stereo at different intervals of disparity levels
as they increase instead of calculating all possible disparity levels. In addition, we generate the other disparity levels by
parabola fitting or edge-aware filtering that is used for subpixel estimation. Such methods use fewer FPGA resources
than the calculation of all disparity levels.

3.2 Disparity reduction and excluded cost estimation

Fig. 3 illustrates the main idea of this paper. Given a stereo matching system with a disparity range of 0-63, the system
computes the cost for all disparities in the 0-31 range. In addition, it computes the cost for every other disparity in the
32-47 range. Finally, it computes the cost for every fourth disparity in the 48-63 range.

There are two methods to reduce the disparity levels. One is to reduce the levels only for the rawcost computation
and not the cost aggregation. In this method, the system needs to interpolate the cost of the omitted disparities.
In addition, this does not significantly reduce the memory required for cost aggregation because only the rawcost
calculation block is reduced. This method obtains similar performance results to the calculation of the entire disparity.
The other method is to reduce the levels for the entire cost computation including cost aggregation. In this case, the
memory and logic required are greatly reduced. The method can then perform at higher resolutions using an improved
timing margin and it is possible to implement additional algorithms. However, computation is required to estimate the
cost value of the omitted disparity levels. Depending on these results, the performance of the final disparity method is
determined.

Originally, quadratic fitting subpixel estimation was used to determine the disparity of the decimal point unit.
When the disparity has been adequately sampled, this is a useful method for estimating the analytic minimum from the
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sampled disparity space. We use three neighboring cost values to locate the local minimum point via parabola fitting.
For example, if the disparity interval is 2, we estimate the disparity with the lowest cost value in the disparity range
[d-2, d+2] using the cost values of each disparity: d-2, d, and d+2.

4 Performance comparison and Resource usage

In this section, by applying the algorithm of Section 2 to the Middlebury Evaluation v2 image dataset, we compare
the results of reducing the disparity range with those of the original disparity range. We evaluated the quantitative
performance for the Teddy and Cones images, which have a higher resolution than the other images in the Middlebury
dataset. Figure 4 shows the disparity results calculated by the proposed and conventional methods. Pixels indicating
the difference between the conventional and proposed methods demonstrate the errors on regions of significant change
in disparity.

Fig. 4: Comparison of disparity results for entire cost and reducing cost volumes: (left to right) original image,
groundtruth image, entire cost volume computation, reduced cost volume computation, and difference between the
results

Table 1 shows the resource utilization in a Virtex7 2000T. The parameters of the entire cost computation are:
maximum census size = 11x11, maximum disparity = 256, and image resolution = 1280x720. The parameters of the
reduced cost computation are all the same except for the disparity range = [0-127, and even numbers between 128 to
255]. The results confirm that the proposed method significantly reduces the resource usage compared to that of the
conventional method.

Table 1: Resource utillization in Virtex7 2000T

Resource Entire cost computation \ Reducing cost computation \ Total resource Available
Slice LUTs 431938 (35%) 298336 (21%) 1221600

Slice Registers 755406 (31%) 518214 (24%) 2443200
Memory 679 (53%) 529 (40%) 1292

DSP 768 (36%) 576 (27%) 2160

5 Conclusion and Future work

In this paper, we presented a spare cost computation method to implement a stereo matching system on an FPGA
by dropping disparity levels. In addition, using subpixel estimation and filtering to calculate the dropped disparity
levels, we presented an effective method to regenerate the cost. However, because of pixel-locking and local minimum
methods, the proposed algorithm has a significant number of errors. In future, the ordering and resolution (from integer
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to point number) to calculate the subpixel will be investigated. After this, we will investigate using edge-preserving
filtering to eliminate errors. By changing the operation order and resolution, we expect to better estimate the omitted
cost values. After this, we plan to perform edge-preserving filtering to eliminate errors and noise.
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