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Abstract - Lattice reduction has been successfully applied to data detection in multiple-input multiple-output (MIMO) systems. In this
paper, we introduce a polynomial time algorithm for lattice-reduction-aided (LR-aided) MIMO detection. The hybrid method we present
integrates the length-based size reduction technique into an angle-measured method. To assess the performance of the algorithm, we
compare it with the LLL algorithm, a widely used algorithm in MIMO and wireless communications. Our experimental results show that
despite that the two algorithms have the same complexity, the hybrid method is empirically more efficient than the LLL algorithm, and
the communication channels improved by our hybrid method have smaller bit error rate (BER) than those improved by the LLL algorithm
in data detection.
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1. Introduction
Lattice reduction plays an important role in numerous fields of mathematics, computer science, cryptography and signal

processing. Recently, lattice reduction has shown its advantages on data detection in MIMO systems [1-5]. For example, the
LLL algorithm is widely adopted in MIMO systems because of its relatively low complexity in computation. It has been
shown that the sub-optimal LLL algorithm can improve the performance of MIMO systems with respect to high spectral
efficiency in signal transmission, high accuracy for data detection and the maximum receive diversity over fading channels
[15, 6, 7]. See [8] for more details about the applications of lattice basis reduction in wireless communications.

Consider an m× n MIMO system of n transmit antennas and m receive antennas. The relation between an n× 1
transmitted signal x and an m×1 received signal y is modelled by y = Ax+n, where A and n represent the channel matrix
and the additive noise, respectively. The channel matrix A is complex in a full-rank flat-fading MIMO system, but it can
be transformed into a real matrix of double size straightforwardly [8]. Hence, in this paper, we assume A is real. The
optimum maximum likelihood (ML) decoding selects xML that is a solution for the following minimization integer least
squares problem:

xML = arg min
x∈A
||y−Ax||2, (1)

where A denotes the finite set of real-valued modulation alphabet being used. The complexity of solving (1) grows expo-
nentially corresponding to the number of antennas [3, 9]. Hence ML decoding is not feasible for large number of transmit
antennas. To reduce the decoding cost, many approximate algorithms have been introduced to achieve high performance with
low complexity, such as zero-forcing (ZF) decoding and minimum mean-square-error (MMSE) decoding [5]. The perfor-
mance of those decoding strategies heavily depends on the quality of A. Lattice reduction algorithms can improve the quality
of the channel matrix A w.r.t. the orthogonality of columns and condition number of the matrix.

Suppose A is an m×n (m≥ n) real matrix of full column rank, a lattice generated by A is defined as L(A) = {Az | z ∈
Zn}, where Zn is the set of all integer n-vectors. The columns of A and n are respectively called the basis and the dimension
of the lattice. A lattice of dimension at least 2 has infinitely many bases [4]. Any two bases A and A′ for the same lattice
are related by a unimodular matrix Z, i.e., Z is an integer matrix and |det(Z)|= 1, such that A = A′Z. For a given basis, the
lattice reduction algorithms are aimed to find a reduced basis with relatively shorter and more orthogonal vectors. There are
several notions of reduced basis, such as the Minkowski reduced basis [10, 11] and the HKZ reduced basis [12], both need
exponential time to be computed. Another category of reduced basis can be found in polynomial time, such as the Schnorr
reduced basis [13] and the widely used LLL reduced basis [14]. It has been proven that the LLL-reduction-aided decoding
can achieve the full diversity of a MIMO fading channel [15, 6].

In this paper, we present a hybrid method for LR-aided MIMO detection. We first show that the hybrid method has the
same time complexity as the LLL algorithm, which is widely used in many signal processing applications. Then we compare
our algorithm with the LLL algorithm by experiments, To our best knowledge, the LLL algorithm (including its variants)
is considered to be the only sub-optimal method that practically produces reasonably good results in polynomial time. Our
experimental results show that the hybrid method computes lattice bases of better quality in less time than the LLL algorithm
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for MIMO systems. In our MIMO simulations, the communication channels improved by the hybrid method has smaller BER
than the channels improved by the LLL algorithm.

Notations: We choose column-version representation for matrices and vectors in this paper. The length of a vector v is
measured by the Euclidean norm ‖v‖2, denoted by ‖v‖ for simplicity, and In denotes the identity matrix of order n.

2. A Generic Jacobi Method
We call a two dimensional basis matrix A = [a1,a2] Lagrange reduced, if ||a1||2 ≤ ||a2||2 and |aT

1 a2| ≤ ||a1||22/2.
Denote θ the angle between a1 and a2, then |cos(θ)| = |aT

1 a2|/(||a1||2 · ||a2||2) ≤ |aT
1 a2|/||a1||22 ≤ 1/2. Thus, we have

π/3 ≤ θ ≤ 2π/3 [16]. We generalize the definition of the Lagrange reduction to n-dimensional lattices. We say that a basis
matrix A= [a1,a2, . . . ,an] is Jacobi reduced, if |aT

i a j| ≤ ‖ai‖2
2/2 and ‖ai‖2≤‖a j‖2, for all 1≤ i< j≤ n. Let G= [gi j] =AT A

be the Gram matrix and R be the upper triangular matrix in the QR decomposition of A, respectively. We have gi j = aT
i a j

and g j j = ||a j||22. Hence the above conditions of the Jacobi reduction are equivalent to |gi j| ≤ gii/2 and gii ≤ g j j.
In 2012, S. Qiao presented a generic Jacobi method for lattice basis reduction [16]. It computes a Jacobi reduced basis

by repeatedly applying the Lagrange reduction, shown as Procedure 1, to every pair of vectors in an n-dimensional basis, until
every pair is Lagrange reduced. Algorithm 1 shows the row-cyclic version of a slightly improved generic Jacobi method.

Procedure 1: Lagrange(G,Z,R, i, j)

Input : G, Z, indices i, j (1≤ i < j ≤ n), and optional
R

Output: Updated G, Z and optional R
1 Set integer s ∈ {i, j} such that gss = min(gii,g j j), and

Set integer l the other index in {i, j} ;
2 q = bgi j/gsse ; // Nearest integer rounding
3 Set Zi j = In except zsl =−q ;
4 G← ZT

i jGZi j ;
5 Z← ZZi j ;
6 if R is present then
7 R← RZi j ;

Algorithm 1: The Generic Jacobi Method

Input : A basis matrix A
Output: A Jacobi reduced basis matrix A

1 G = AT A, Z = In ;
2 while AZ is not Jacobi reduced do
3 for i = 1 to n−1 do
4 for j = i+1 to n do
5 if |gi j| ≤ gii/2 and gii ≤ g j j are not satisfied

then
6 [G,Z]← Lagrange(G,Z, i, j) ;
7 Swap the ith and jth columns of Z ;
8 Swap the ith and jth columns, ith and jth

rows of G

9 A = AZ ;

Let G and G′ be the input and the output Gram matrix in procedure Lagrange(G,Z,R, i, j), respectively. We call
τ =

√
Πn

k=1g′kk/Πn
k=1gkk the reduction factor of the procedure. In line 2, we compute gi j/gss and round the value to the

nearest integer q. Then we reduce gll using gss and gls, i.e., g′ll = gll + q2gss− 2qgls. If |q| > 1, the reduction factor τ of
Lagrange is less than or equal to 1/

√
3; if |q|= 1, then τ may arbitrarily close to 1 [17, 18]. Procedure Lagrange costs O(n)

(additions and multiplications) by vector operations, since it only operates a maximum of two columns and two rows of each
input matrix. However, the time complexity of Algorithm 1, the generic Jacobi method, remains unknown.

3. A Hybrid Method for Lattice Basis Reduction
To further improve the quality of the basis matrices computed by the Jacobi method, especially measured by condition

number, we integrate the size reduction into Algorithm 1. We first introduce a notion of partial size reduction, which is a
generalization of the size reduction [14] used in many lattice reduction algorithms. A basis matrix A is partially size reduced
with respect to an index pair (i, j), 1 ≤ i < j ≤ n, if the upper triangular matrix R in the QR decomposition of A satisfies
|rk, j| ≤ |rk,k|/2, for all 1≤ k≤ i. Thus, if A is partially size reduced with respect to (i, i+1) for all i, 1≤ i < n, then A is size
reduced. Secondly, to ensure that the reduction factor of procedure Lagrange() is strictly smaller than 1, that is, the basis
vector length is strictly reduced, we introduce a condition parameter ω to the definition of the Jacobi reduction.

Definition (ω-reduced) We say that an n-dimensional basis matrix A = [a1,a2, . . . ,an] is ω-reduced, if every pair of
basis vectors (ai, a j) satisfies

|baT
i a j/‖as‖2

2e| ≤ 1 (2)
ω ‖al‖2 < ‖al−ζ ·as‖2 (3)

for all 1≤ i < j≤ n, where 1/
√

3≤ω < 1, notation ζ =±1 denotes the sign of aT
i a j, as and al are the shorter and the longer

of ‖ai‖2 and ‖a j‖2, respectively. In terms of the gram matrix G, we have |ζ ·aT
l as|= |gi j|. Then, (2) and (3) are equivalent to
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| bgi j/gsse | ≤ 1, (4)

ω
2gll < gii +g j j−2|gi j|. (5)

Algorithm 2 shows our hybrid Jacobi method. The for loop between Line 4 to 6 reduces the ith basis vector and
creates non-zero entries rk,i, k = i+1, ..., j. The first part of the process Triangulate R eliminates the non-zero entries from
r j,i to ri+1,i by the plane rotations [19, 20]. The elimination process will create another sequence of non-zero elements rk+1,k,
k = i+ 1, ..., j− 1 on the subdiagonal. Likewise, the second part of Triangulate R eliminates the newly created non-zero
elements from rk+2,k+1 to r j, j−1 by the plane rotations. Similarly, in line 13, we triangulate R after swapping the ith and the
kth column of R in line 11. To make the length reduction of basis vectors to be more effective, after each inner j-loop, we
push the shorter basis vector to the front. In line 14, we introduce a condition for partial size reduction to prevent the lengths
of basis vectors from increasing. Specifically, we will not apply the partial size reduction process if it cannot decrease gii.
Notice that the partial size reduction process also changes matrices G and Z accordingly. We refer [14, 21] for the detailed
procedure of the size reduction.

Input : A basis matrix A and a reduction factor ω (1/
√

3≤ ω < 1)
Output: Reduced A

1 G = AT A, Z = In, get R from the QR decomposition of A ;
2 while not all elements gi j satisfy (4) and (5) do
3 for i = 1 to n do
4 for j = i+1 to n do
5 if gi j doesn’t satisfy (4) and (5) then
6 [G,Z,R]← Lagrange(G,Z,R, i, j) ;

7 Triangulate R using the plane rotations ;
8 Find an index k (i≤ k ≤ n), s.t. gkk = minn

l=i gll ;
9 if k 6= i then

10 Swap the ith and kth columns in Z ;
11 Swap the ith and kth columns in R ;
12 Swap the ith and kth columns, and the ith and kth rows in G ;
13 Triangulate R using the plane rotations ;
14 Apply partial size reduction on R w.r.t. (i−1, i) only if gii is reduced after the application ;

15 A = AZ ;
Algorithm 2: Hybrid Jacobi method

Let B = max1≤i≤n ‖ai‖2. Lagrange() reduces the length of a basis vector with a factor of at least ω . Thus, Algorithm 2
calls Lagrange() maximum O(n logB) times [18]. Using vector operations, the time complexities of Lagrange() and partial
size reduction process are O(n) and O(n2), respectively. Hence, the number of arithmetic operations needed by Algorithm 2,
the hybrid Jacobi method for lattice basis reduction, is O(n4 logB), the same as the widely-used LLL algorithm [14].

4. Experimental Results
In signal processing, the performance of radio communications depends on an antenna system. Hence, MIMO has

become an essential element of wireless communication standards for wireless LANs, 3G and 4G mobile-phone networks.
The lattice reduction technique has been successfully introduced to numerous applications in signal processing for decades.
In this section, we simulate data detection process in MIMO systems. In our simulation, we compare the BER performance
of the two LR-aided data detection algorithms, the hybrid method and the well-known LLL algorithm, as shown in Fig. 1.
Our MIMO systems use 8× 8 antennas. The signal noise ratio SNR varies from 2 dB to 20 dB. We generate 1,000 channel
matrices for each SNR. The entries of the channel matrices are random Gaussian distributed complex numbers of zero-mean
and unit variance. For each channel matrix, we transmit 1,000,000 random binary bits to the receiver with 4-QAM modulation
scheme. Fig. 1 (a) shows that the hybrid method performs better than the LLL algorithm with respect to BER in both ZF and
MMSE detection. Fig. 1 (b) indicates that the hybrid method requires about one third of time as the LLL algorithm.
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Fig. 1: Comparison of the hybrid method and the LLL algorithm in MIMO simulations

5. Conclusion
In this paper, we present a novel hybrid method for lattice reduction aided decoding in MOMO systems. Our ex-

perimental results showed that the presented algorithm is empirically much faster than the LLL algorithm. The simulations
also showed that the communication channels improved by the hybrid method have smaller BER than the widely used LLL
algorithm for 8×8 MIMO systems. Thus the proposed algorithm can be potentially used in large MIMO systems.
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[8] D. Wübben, D. Seethaler, J. Jalden, and G. Matz, ”Lattice Reduction: A Survey with Applications in Wireless Commu-

nications,” IEEE Signal Processing Magazine, vol. 28, no. 3, pp. 70-91, 2011.
[9] J. Jalden and B. Ottersten, ”On the complexity of sphere decoding in digital communications,” Signal Processing, IEEE

Transactions on, vol. 53, no. 4, pp. 1474 - 1484, 2005.
[10] H. Minkowski, ”Discontinuity region for arithmetical equivalence,” J. reine Angew, no. 129, pp. 220-274, 1905.
[11] J. L. Donaldson, ”Minkowski reduction of integral matrices,” j-MATH-COMPUT, vol. 33, no. 145, pp. 201-216, 1979.
[12] A. Korkine and G. Zolotareff, ”Sur les formes quadratiques,” Mathematische Annalen, vol. 6, no. 3, pp. 366-389, 1873.
[13] C. P. Schnorr, ”A hierarchy of polynomial time lattice basis reduction algorithms,” Theor. Comput. Sci., vol. 53, no. 2-3,

pp. 201–224, 1987.
[14] A. K. Lenstra and L. Lovász, ”Factoring polynomials with rational coefficients,” Math. Ann., vol. 261, pp. 515–534,

1982.
[15] L. Bai and J. Choi, Low Complexity MIMO Detection. New York: Springer, 2012.
[16] S. Qiao, ”A Jacobi Method for Lattice Basis Reduction,” in Proceedings of 2012 Spring World Congress on Engineering

and Technology (SCET2012), 2012, vol. 2, pp. 649-652.
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