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Abstract - Type 1 Diabetes Mellitus (T1DM) is a worldwide disease. Although a complete cure has not been found yet, an artificial 

pancreas (AP), also known as a closed-loop insulin therapy, is becoming more important for the treatment of this disease. Controller part 

of the AP can compute insulin infusion rate that will keep blood glucose concentration (BGC) in normoglycemic ranges for patients with 

T1DM. In this paper, three different control algorithms are proposed as a controller part of the AP. These control algorithms include 

genetic algorithm based proportional-integral-derivative (GA-PID) control, artificial bee colony algorithm based PID (ABC-PID) control, 

and particle swarm optimization algorithm based PID (PSO-PID) control. In silico control studies are implemented through a virtual 

diabetic patient based on the Stolwijk-Hardy’s glucose-insulin regulation model. Simulations are performed to assess control function in 

terms of tracking BGC profile of a healthy person against to a daily food intake of three meals. In order to demonstrate robustness, sensor 

noise test is implemented. Simulation results are promising in terms of regulating the daily BGC. 
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1. Introduction 
 Diabetes Mellitus (DM) is a widespread disease characterized by chronic hyperglycaemia stemming from the failure 

of the pancreas in insulin secretion, insulin action, or both. Type 1 Diabetes Mellitus (T1DM) and Type 2 Diabetes Mellitus 

(T2DM) are two types of DM. T1DM is characterized by absolute deficiency of insulin caused by autoimmune system 

damage to the insulin producing beta cells. On the other hand, the insulin does not function properly due to resistance to 

insulin in patients with T2DM. There are some complications arising from DM: neuropathy, blindness, nephropathy, and 

other long-term vascular complications [1]. According to the International Diabetes Federation (IDF), there are 

approximately half a million children living with T1DM around the world. In 2013, Turkey has the highest diabetes national 

prevalence (14.8%) in Europe [2]. 

 For glucose uptake and utilization, patients with T1DM need exogenous insulin. Exogenous insulin should be infused 

at an appropriate rate to keep the BGC in normoglycemic ranges (0.6 mg/mL ≤ BGC ≤ 1.6 mg/mL [3]). Nowadays, 
measurements of the BGC 3-5 times in a day and the injections of an equal amount of insulin subcutaneously are proposed 

as medical treatment. However, this method is unsuitable and painful. Furthermore, it is difficult to deliver right amount and 

type of the insulin. For this reason, much research is being performed to cope with the deficiencies of the current medical 

treatment. In this study, we focused on a closed-loop control system for insulin injections. The closed-loop control system 

known as the artificial pancreas (AP) includes a continuous glucose monitor (CGM) or a glucose sensor, a controller, and an 

insulin pump. CGM signals are transmitted to the controller which determines the required insulin injection rate to maintain 

the BGC in normoglycemic ranges. Required amount of insulin can be delivered by the insulin pump. The block diagram of 

the closed-loop control system for patients with T1DM is shown in Fig. 1. 

 Thanks to advances in biomedical system modelling, several models have been introduced to investigate the glucose-

insulin regulatory system. These models are crucial in terms of better understanding the glucose-insulin regulatory system. 

Moreover, clinical over crowdedness increases the importance of the modelling. Some of these models such as minimal 

model, Hovorka model, meal simulation model, and the Stolwijk-Hardy glucose-insulin regulation model are common in the 

literature and referred to in [4]-[7], respectively. In this paper, the modified Stolwijk-Hardy glucose-insulin regulation model 

is considered [7]. The model is used to obtain both virtual diabetic patient and the healthy person data. 
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Fig. 1: A closed-loop glucose control system (Artificial Pancreas). 

 

Various control algorithms have been proposed to control the BGC of patients with T1DM through usage of the 

mathematical models. Some of these algorithms include PID (proportional-integral-derivative) controller [8], model-

based and model-predictive controller (MPC) [9], and fuzzy logic controller (FLC) [10]. On the other hand, there are 

many studies based on the combination of different control algorithms. In [11], performances of the FLC and the 

Fuzzy-PID controller are compared versus single glucose infusion based on the modified Stolwijk-Hardy glucose-

insulin regulation model. In [12], the authors proposed a FLC that is optimized by particle swarm optimization (PSO) 

algorithm to follow the glucose profiles of a healthy person with minimum infused insulin. For this purpose, a 

nonlinear delay differential model is used. Based on the same model, a genetic algorithm based PI-FLC is proposed 

in [13]. 

In this paper, we performed three different control strategies to regulate the BGC of a patient with T1DM. GA-

PID, PSO-PID, and ABC-PID controllers are implemented on the virtual diabetic patient described by the modified 

Stolwijk-Hardy glucose-insulin regulation model. In contrast to [11], single exogenous glucose intake is not used. To 

assess the performance of the control algorithms against daily food intake, three meals (breakfast, lunch and dinner) 

are added to the model as disturbances. 

 

2. The Modified Stolwijk-Hardy Model 
In silico control trials are conducted on the Stolwijk-Hardy’s glucose-insulin regulation model version as 

presented by Khoo [7]. It is one of the simple models when examined in terms of mathematical complexity. The model 

comprises just two state variables, G(t) and I(t). The model was modified by adding a term for exogenous insulin 

infusion UI(t) [14]. The glucose dynamics are expressed as:  
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 It is important to note that the cross-product term between G(t) and I(t), the blood insulin concentration (BIC), makes 

the above equations nonlinear. The corresponding dynamic mass balance for insulin is defined as: 
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 Parameters and coefficients of the model are taken from [7, 11, 14]. It should be emphasized that the coefficients and 

parameters are related to physiology. In this model, the total volume of plasma and interstitial fluid was given in a single 

compartment (15 L, in a healthy adult). Steady-state concentrations of the BGC and the BIC in this compartment were 0.81 

mg/mL and 0.055 mU/mL, respectively. As mentioned before, for patients with T1DM, the main problem is the inadequacy 

of beta cells to produce the necessary amount of insulin. In the model, this situation was performed by reducing the sensitivity 

of insulin response to glucose. From this modelling for patients with T1DM, glucose and insulin concentrations were 

obtained as 1.28 mg/mL and 0.029 mU/mL in the steady state, respectively [7]. 
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2.1. Open-loop simulation of the model 
 An open-loop simulations of the Stolwijk-Hardy model (i.e. without exogenous insulin infusion UI(t)), given by the 

aforementioned  equations, are conducted in  MATLAB/SIMULINK (The MathWorks, Inc.). Simulations are performed for 

24 hours (from 06.00 am to 06.00 am). In the model, exogenous glucose infusion UG(t) is considered as daily three meals: A 

meal of 40 g glucose at 07.00 am. for breakfast, a meal of 60 g glucose at 12.00 for lunch, a meal of 60 g glucose at 17.00 

pm. for dinner. Simulation studies are evaluated for the healthy person and the virtual diabetic patient (a patient with T1DM). 

The BGC and the BIC profiles are shown in Fig. 2 and Fig. 3, respectively. 

 

 
Fig. 2: Blood glucose concentration signals of the model (open-loop). 

 

 
Fig. 3: Blood insulin concentration signals of the model (open-loop). 

 

 In Fig. 2, the abrupt rises in the BGC with UG(t) are considered as food intakes. After a certain time from the meals, 

they settle down to the steady-state values determined by the model. Furthermore, the secreted level of insulin changes 

according to the BGC and it is shown in Fig. 3. 

 

3. Design of Proposed Control Methods 
 The modified model, with the addition of the exogenous insulin infusion term UI(t), can be thought of as a dynamic 

system that includes two-inputs ( UI(t) and UG(t)) and two-outputs (G(t) and I(t)). For the patient with T1DM, the BGC can 

be regulated by UI(t). In this context, we proposed three different closed-loop control techniques. These control techniques 

are based on a traditional PID controller. The transfer function of a PID controller is as follows: 

 

1
( )G s Kp Ki Kd s

s
     (3) 

 

 Three parameters (proportional gain, Kp; integral gain, Ki; derivative gain, Kd) affect the robustness of the controller 

via certain specifications. Some of these specifications are rise time, settling time, overshoot, stability, and steady-state error. 

The individual effects of the parameters on these specifications are presented in [15]. 

 To implement a PID controller, three parameters (Kp, Ki, Kd) must be determined carefully. For this purpose, efficient 

tuning methods based on GA, PSO algorithm, and ABC algorithm are proposed to achieve controller tuning in order to 
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regulate the BGC of the virtual diabetic patient. The block diagram of the proposed GA-PID, PSO-PID, and ABC-PID control 

techniques is shown schematically in Fig. 4. 

 

 
Fig. 4: Block Diagram of GA-PID, PSO-PID, and ABC-PID controllers. 

 

3.1. Brief explanation of optimization algorithms 
3.1.1 Genetic Algorithm (GA) 

Basic principles of GA were first conceived by Holland [16]. The technique was inspired by the concepts of 

natural selection and genetics. GA uses stochastic transition rules instead of deterministic rules, and handle a 

population of potential solutions known as chromosomes that evolve iteratively. Each iteration of the algorithm is 

known as a generation. An objective function and genetic operators such as selection, crossover, and mutation function 

perform effectively to simulate the evolution of a solution. The selection operator is used to copy the large number of 

most fit solutions into the next generations. Thus, an increase in quality for better solutions is ensured. The crossover 

operator is the second operator that mimics mating in populations. It provides an opportunity for the chromosomes to 

mix and match their most favourable qualities in forming offspring. Diversity in the population characteristics is 

provided by the mutation operator. The mutation operator prevents the algorithm from getting trapped in local minima 

and paves the way for global search. A detailed description of the GA can be found in [17]. In order to apply the GA 

for tuning PID parameters (Kp, Ki, Kd) values given in Table 1 are used in this study. 

 
3.1.2 Particle Swarm Optimization (PSO) Algorithm 

PSO, first introduced by Kennedy and Eberhart [18], is a modern heuristic algorithm that inspired by behaviours 

in nature such as bird flocking and fish schooling. Unlike the GA, the PSO has no evolution operators such as crossover 

and mutation. The PSO is less prone to getting trapped in local minima and has good computational efficiency [19]. 

The PSO starts with an initial population of randomly generated solutions called particles which fly through the search 

space. The particles correspond to the chromosomes in the GA. Each particle, which has a position and a velocity, 

serves as a candidate solution to the problem. The best previous position is kept and called Pbest (Pb). The best particle 

among all particles in the population is the overall best value, and its position is called Gbest (Gb). The position and 

the velocity of each particle are updated according to Eqs. (4) - (5). 
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 where Xi
(k) is the kth position of the particle i; Vi

(k) is the kth velocity of the particle i; c1 and c2 are cognitive and social 

constant; r1 and r2 are uniformly distributed random numbers in [0 1], and w is the inertia weight. The inertia weight is used 

to achieve a balance in the exploration and exploitation of the search space. In this paper, linearly decreasing inertia weight 

(LDIW) [20] is used. The LDIW demonstrates its superiority in the computational complexity, success rate, and solution 

quality as follows: 
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 where wi is the inertia weight of i. iteration, itermax is the maximum number of iterations, and iter is the i. iteration. The 

PSO parameter values used in this paper are given in Table 1. 

 
3.1.3 Artificial Bee Colony (ABC) Algorithm 

 ABC algorithm, which was inspired by the foraging behaviour of honeybees, is a global optimization algorithm that 

was developed by Karaboga in 2005 [21, 22]. Forager bees work collaboratively to gather a greater amount of nectar into 

the hive. This operation is performed intrinsically without a central control mechanism. Further information and detailed 

behaviour of real bees can be found in [21]. 

 Each solution is the position of the food source in ABC algorithm. The honeybees in the colony are categorized into 

three groups: employed bees, onlooker bees and scout bees. This categorization is determined according to how they select 

the food source to utilize. Half of the colony contains employed bees and the other half is made up of the onlooker bees. The 

number of employed bees or onlooker bees is equal to the number of solutions in the population. Employed bees exploit the 

nectar sources already explored and provide information to the onlooker bees about the quality of the food source site they 

are exploiting. Onlooker bees don’t have any source region in their memory and select probably profitable food source 
regions. Information about the profitability of the sources is gathered from the experiences of the employed bees. Scout bees 

perform the job of exploration in order to find a new food source [22]. In order to obtain PID parameters (Kp, Ki, Kd) using 

ABC algorithm, the values given in Table 1 are used in this paper. 

 
Table 1: Parameter values of GA, PSO, and ABC. 

 

GA PSO ABC 

Parameters Method / Value Parameters Value Parameters Value 

Generation Size 30 Maximum İteration 30 Maximum Cycle 30 

Population Size 1000 Size of the swarm 1000 Size of the colony 1000 

Bounds [0 – 5] Bounds [0 – 5] Bounds [0 – 5] 

Mutation Uniform / 0.01 Cognitive parameter c1 2 Limit 1500 

Crossover Heuristic / 0.8 Social parameter c2 2  -  - 

Selection Method Roulette Wheel Inertia weight [wmax – wmin]  [0.9 – 0.4]  -  - 

 
3.2. Choosing of an objective function 
 While designing the closed-loop controller for blood glucose control, we assume that difference between the BGC of 

the healthy person and the BGC of the virtual diabetic patient as an error. Our main purpose is to minimize the error and to 

mimic the glucose-insulin dynamics in healthy person. Several performance criteria can be used as an objective function for 

the time domain optimization of PID controllers using heuristic algorithms. In this paper, mean absolute percentage error 

(MAPE) is chosen as an objective function for the optimization algorithms. The main purpose is to minimize the MAPE as 

in [12, 13, 23]: 

 

1

0

BGC BGCn healthy measured
MAPE

n BGCt
healthy



 


 (7) 

 

 where n is the duration of simulation, BGChealthy is the BGC of the healthy person and BGCmeasured represents the BGC 

of the virtual diabetic patient. 
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4. Simulation Results 
 In order to demonstrate the performance of the proposed controllers, MATLAB software is utilized. In a similar 

manner to open-loop simulations, simulations of closed-loop control studies are performed for 1440 min (24 h) which contain 

daily three meals. The BGC and the BIC profiles of the healthy person, the virtual diabetic patient, GA-PID, PSO-PID, and 

ABC-PID controllers are shown in Figs. 5 - 6, respectively. 

 

 
Fig. 5: Comparison of the BGC profiles. 

 

 
Fig. 6: Comparison of the BIC profiles. 

 

In the light of simulations, comparisons of the performance criteria are presented in Table 2. Moreover, obtained 

minimum and maximum BGC levels from simulations are given in Table 3. 

 
Table 2: Comparison of performance criteria of the proposed controllers. 

 

 GA-PID PSO-PID ABC-PID 

MAPE 0.5575% 0.4844% 0.4725% 

MAPE (with sensor noise) 0.6235% 0.5326% 0.5207% 

 

 As can be clearly seen in Table 3 and Fig. 5, the minimum BGC levels of the proposed controllers are higher than the 

minimum BGC level of the healthy person. From this point of view, no hypoglycaemic event occurred during simulations. 

To show the differences of the BGC profiles clearly, an enlarged image of a two hour (from 18.00 pm to 20.00 pm) simulation 

period is also given in Fig. 5. 

 As shown in Table 2, the ABC-PID controller has the minimum fitness function value among the proposed controllers. 

It can be claimed that the ABC-PID controller gives more effective results than the other proposed controllers in terms of 

regulation the BGC the virtual diabetic patient. Through the implementation of the ABC-PID controller, BGC of the virtual 

diabetic patient better converges to the BGC profile of the healthy person. 
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Table 3: Obtained minimum and maximum BGC levels through simulations. 
 

  
minimum BGC 

(mg/mL) 

maximum BGC 

(mg/mL) 

Healthy person 0.6194 2.4303 

Patient 1.1546 3.1302 

GA-PID 0.6873 2.9648 

PSO-PID 0.6284 2.9501 

ABC-PID 0.6551 2.7834 

 
4.1. Sensor Noise 
 In this case, the effect of measurement noise is considered. A white Gaussian noise with mean equal to 0 and variance 

equal to 0.3 is assumed. Comparison of the performance criteria in the presence of sensor noise are also presented in Table 

2. 

 As pointed out in Table 2, the ABC-PID controller has the minimum fitness value among the proposed controllers 

against measurement of sensor. Thus, the ABC-PID controller gives highly effective results in dealing with sensor noise. 

More importantly, these results are promising in terms of practical applications such as an insulin pump by means of the 

efficacious performance of the ABC-PID control technique. It should be noted that, choosing the proper insulin pump is 

crucial with regards to the usage of such controllers for real-life applications. 

 Simulation results of the ABC-PID controller that consist of all situations (three meal intake and sensor noise) are then 

given together in Fig. 7. 

 

 
Fig. 7: BGC profiles of the ABC-PID controller against all situations. 

 
5. Conclusion 
 In this study, we consider a virtual diabetic patient (a patient with T1DM) for regulating the BGC. For this purpose, 

PID based control techniques such as GA-PID, PSO-PID, and ABC-PID controllers are proposed. These controllers are 

implemented on the virtual diabetic patient generated from the modified Stolwijk-Hardy glucose-insulin dynamic model of 

a patient with T1DM and compared to a healthy person. Through 24 hour simulations, the proposed controllers are tested 

against daily food intake of three meals. To compare the performance of the proposed controllers, MAPE is used. 

 Simulation results show that heuristic algorithms give better results in terms of regulating the BGC. The ABC-PID 

controller is more successful within the proposed controllers. The ABC-PID controller deals with difficulties such as meal 

disturbances and sensor error effectively. Moreover, hypoglycaemia, which is one of the major challenges for the AP, did 

not occur throughout simulation studies. It should be emphasized that the ABC-PID control technique used in this study is 

adapted to the considered problem for the first time in the literature. 
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