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Abstract - This study investigates the issues of visual sensor assisted aerial robot navigation.  The major objectives are to provide the 

aerial robot the capabilities of localization and mapping in global positioning system (GPS) denied environments.  When the aerial 

robot navigates in a GPS-denied environment, the visual sensor could provide the measurement for robot state estimation and 

environmental mapping.  Considering the carrying capacity of the aerial robot, a single camera is used in this study and the image is 

transmitted to PC-based controller for image processing using a radio frequency module.  The extended Kalman filter is used as the 

state estimator to recursively predict and update the states of the aerial robot and the environment landmarks.  The contribution of this 

study are twofold.  First, an efficient data association method is developed to determine the robust landmarks for robot mapping.  

Second, an ultrasonic sensor is used to provide one-dimensional distance measurement and solve the map scale determination problem 

of monocular vision.  Meanwhile, the image depth is represented by using the inverse depth parameterization method and the image 

features initialization is achieved by a non-delayed procedure.  The software program of the robot navigation system is developed in a 

PC-based controller.  The navigation system integrates the sensor inputs, image processing, and state estimation.  The resultant system 

is used to perform the tasks of simultaneous localization and mapping for aerial robots. 
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1. Introduction 
 The vision sensor has a reasonable cost and is generally used as a robot's sensing device, especially in a GPS-denied 

environment. Considering the carrying capacity of the aerial robot, a single camera is used in this study, as shown in Fig. 1, 

and the image is transmitted to PC-based controller for image processing using a radio frequency module. The monocular 

vision sensor captures only two-dimensional images and lacks for the depth information of environmental objects. Without 

the depth information, the location of a new landmark cannot be determined, meanwhile the map scale of the environment 

cannot be estimated initially. For the monocular vision, many researchers have developed landmark initialization 

procedures either in time-delayed method [1] or un-delayed method [2]. The un-delayed method will be utilized in this 

research. When an image feature is selected, the spatial coordinates of the image feature are calculated by employing the 

method of inverse depth parameterization [2]. However, the problem of determining the map scale is still unsolved. In this 

study, an ultrasonic sensing system is developed to provide one-dimensional distance measurement and solve the map 

scale determination problem of monocular vision. 

 The image features detected from the vision sensor can be used to represent the landmarks in the environment and 

build an environmental map for robot navigation. A detection method based on the scale-invariant feature was developed 

by Lindeberg [3]. An image feature is selected by examining the determinant of the Hessian matrix based on the non-

maximum suppression rule. The scale-invariant features have the advantages of high stability and repeatability; however, 

they have the disadvantage of extensive computation. Concerning the issue of computational speed, Bay et al. [4] replaced 

the Gaussian second-order derivative with the box filter and calculated the approximation of determinant of the Hessian 

matrix using the integral image method. This method, called speeded-up robust features (SURFs), significantly reduces the 

calculation time. The SURF algorithm is employed in this study to detect the features from monocular RGB images and to 

represent the landmarks in the environmental map. 
 The contribution of this paper is the novel procedures of data association. In order to build a persistent environment 

map, an efficient procedure of data association for the SURF-based mapping is developed. The procedures of data 

association include the search of the image feature located at the predicted location in image plane, as well as the 

calculation of the Euclidian distance between SURF descriptors. Two methods based on fixed-value levels and fuzzy rules 
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are designed for data association. Meanwhile, we also extend the usability of persistent map and the developed data 

association methods in the tasks of simultaneous localization and mapping (SLAM). In the SLAM tasks, the extended 

Kalman filter (EKF) [5] is used to recursively predict and estimate the robot state as well as the states of environmental 

landmarks. The problem of determining the map scale as well as initializing new landmark are also investigated for 

monocular vision in robot navigation. 

 
Fig. 1: Quadrotor aerial robot with a monocular vision sensor. 

 

2. Aerial Robot SLAM 
 When the aerial robot performs SLAM tasks, the states of the robot and landmarks in the environment are estimated 

on the basis of measurement information. In this study, a monocular vision system is used as the only measuring device in 

the state estimation algorithm. The monocular camera is carried by the aerial robot and treated as a free-moving system 

with unknown inputs [1]. System states are estimated using the EKF estimator to solve the target tracking problem [1,6]. 

The state sequence of a system at time step k can be expressed as 
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 where xk is the state vector, uk is the input, and wk is the process noise. When performing SLAM tasks using a vision 

sensor, the state vector contains the states of the robot and landmarks, 

 

TT
j

T
2

T
1

T
C

TTT
C ] [][ m,,m,m,x,xx  M  (2) 

 

 where xC=[rT, T, vT, T]T denotes the robot coordinates in world frame, and mj represents the jth landmark in the 

environment map M. The objective of the robot SLAM tasks is to estimate the state xk of the target recursively according to 

the measurement zk at k, 
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 where vk is the measurement noise. Since the sensor frame is set at the center of the camera, the coordinates of ith 

observed image feature in the world frame (Fig. 2) is 
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 where r is the position vector of the sensor frame; R is the rotational matrix [7] from the world frame to the sensor 

frame; W
ih  and C

ih  are the ray vectors of the image features in the world and sensor frames, respectively. Because of the 

lack of one-dimensional range information in monocular vision, how to initialize the image features as new landmarks 

becomes an important topic. In this study, a visual landmark initialization procedure based on the inverse depth 

parameterization [2] is developed and described in the following section. 
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3. Vision-Based Mapping 
 For the initialization of new landmarks in the monocular vision system, the un-delayed method is used in this 

research. When an image feature is selected, the spatial coordinates of the image feature are calculated by employing the 

method of inverse depth parameterization [2]. We also developed a one-dimensional distance detector based on the 

ultrasound technology to determine the map scale in monocular SLAM problem [8]. The distance detector consists of an 

ultrasound sensor chip (HC-SR04), a radio frequency transmitter (3Dr Telemetry), and a microchip (Arduino Nano). When 

the aerial robot is taking off, the ultrasound sensor is designed to measure the distance from the ground. The SLAM task 

begins to work if the height of the quadrotor is 1.5 m from the ground. At the beginning of the SLAM task, some SURF 

features obtained from the first image are chosen as the map landmarks and their states are initialized according to eq. (4). 

In the equation, the depth information of these SURF features is obtained from the ultrasound sensor. With these initial 

SURF features, the map scale is also calculated. After the map scale is obtained, the ultrasound sensor is turned off and the 

further added landmarks are initialized by using the inverse depth parameterization [2]. 

 Robot visual mapping needs a robust method to represent the visual landmarks which are detected from images. In 

this study, we used the SURF method to detect and represent the visual landmarks for robot mapping during SLAM tasks. 

The SURF method developed by Bay et al. uses a box filter instead of a difference of Gaussians to approximate the 

determinant of the Hessian matrix [4]. The box filter is further combined with the integral image method to reduce the 

image processing time [9]. After the features are detected from the image, the description vector is computed to represent 

feature characteristics. A high-dimensional description vector is used to describe the uniqueness of the feature. 

 For matching the high-dimensional description vectors for a pair of map landmark and image feature, this study 

developed the procedures of data association based on fixed-value levels and fuzzy rules, respectively. The procedures of 

data association include the search of the image feature located at the predicted location in image plane, as well as the 

calculation of the Euclidian distance between their descriptors using the nearest-neighbor search method [10]. The 

matching criterions for a pair of map landmark and image feature is defined as: the feature must locate at the predicted 

position and their Euclidian distance be within the threshold value. 

 
3.1. Level-shifted Data Associtation 
 The data association based on fixed-value levels is designed as shown in Table 1. The concepts are to design a 

window located at the predicted position for searching the image feature and to set a threshold value for the Euclidian 

distance between the descriptors. Four levels are included in Table 1. For each level, the size of the search window is 

increased by 10 pixels, as shown in Fig. 2, meanwhile the threshold of Euclidian distance is decreased by 0.03. During the 

data association, the first level with the window size 19×19 and distance threshold 0.2 is initially applied. For example, as 

shown in left panel of Fig. 3, landmarks no. 0 and 3 are successfully matched with the corresponding image features. The 

camera speed and acceleration are 0.33m/sec and 0.57 m/sec2, respectively. However, as shown in right panel of Fig. 3, 

landmark no. 3 could not be matched with the corresponding features when the camera speed and acceleration are 

increased to be 0.41m/sec and 2.14 m/sec2, respectively. If the third level with the window size 39×39 and distance 

threshold 0.14 is applied, both landmarks no. 0 and 3 are again matched with the corresponding features, as shown in left 

panel of Fig. 4. For higher camera speed at 0.83m/sec and acceleration at 4.73 m/sec2, the fourth level with the window 

size 49×49 and distance threshold 0.11 must be applied in order to match the corresponding features, as shown in right 

panel of Fig. 4. 

 
Table 1: Fixed-value levels for data association. 

 

Levels 1st 2nd 3rd 4th 

Window-size* 19×19 29×29 39×39 49×49 

distanceEuclidian 
of Threshold  0.2 0.17 0.14 0.11 

* Unit in pixels. 
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Fig. 2: Search windows for locating the image features. 

 

  
Fig. 3: Left panel: camera speed at 0.33m/sec and acceleration at 0.57 m/sec2; Right panel: camera speed at 0.41m/sec and acceleration 

at 2.14 m/sec2. In both cases, the first level is applied. 

 

  
Fig. 4: Left panel: camera speed at 0.41m/sec and acceleration at 2.14 m/sec2. The third level is applied; Right panel: camera speed at 

0.83m/sec and acceleration at 4.73 m/sec2. The fourth level is applied. 

 
3.2. Fuzzy Data Associtation 

 In the level-shifted data association method, the first level must be initially applied. If the image features are not 

matched successfully, then the window-size and distance threshold are shifted to higher levels. Therefore, the data 

association cannot response quickly. The data association method based on fuzzy rules is designed to improve the response 

speed. The velocity vc and acceleration ac are chosen as the inputs of the fuzzy rules. The input and output membership 

functions are planned as shown in Figs.5 and 6, respectively. The absolute velocity vc varies from 0 to 2m/sec, while the 

absolute acceleration ac changes from 0 to 4m/sec2. The output U is limited from 9 to 29 pixels. The fuzzy rule base is 

designed according to the experiments and listed in Table 2. The center-of-gravity method is used to defuzzify the output, 
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 where wi is the weight value of the output membership function ui. The output U is the radius of the search window 

and the resultant window-size is (2U+1)×(2U+1) pixels. The threshold of Euclidian distance dmatch is chosen to be 
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 where dmatch_int=0.2 is the initial distance; dmatch=0.006 is the incremental distance; Z0=9 is the initial value of 

output membership function. 
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Fig. 5: Membership functions of the velocity and acceleration inputs. 
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Fig. 6: Membership functions of the outputs. 

 

 

Table 2: Table of fuzzy rule base. 

 
(ac) 

(vc) Z S B 

Z Z0 P1 P2 

S P1 P2 P3 

B P2 P3 P4 

 

4. Experimental Results 
 For implementing the navigating tasks, the monocular vision is integrated with the free-moving motion model, the 

measurement model, and the SURF detection algorithm to form a SLAM system. Once the images are captured by the 

camera, image features are detected by using the SURF method. The system performs data association of the map 

landmarks and the image features using the proposed level-shifted and fuzzy rule methods. A map management system is 

also designed to coordinate the newly added features and the “bad” features in the system. New features are chosen as 

landmarks and added to the map when the robot explores an unknown environment. The state variables of all new 

landmarks are augmented in the state vector in eq. (1). However, features that are not continuously detected during the task 

are considered as “bad” features and are deleted from the state vector. 
 Two experiments are carried out to validate the proposed algorithms. The first experiment depicts the performance 

comparison of two developed data association methods. Aerial robot SLAM task is implemented in the second experiment 

to demonstrate the performance of the integrated system. 

 
4.1. Performance of Data Associtation Methods 

 The performances of two developed data association methods are compared in this experiment. For the similar scene 

in a SLAM task as shown in Figs. 7 and 8, two data association methods are performed to locate the landmarks in the map. 

By using the fuzzy data association method, landmark no. 301 is determined at the down-right corner, as shown in Fig. 7. 
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However, the same landmark could not be obtained by using the level-shifted method at the first two calculations, as 

shown in Fig. 8. 

 Table 3 depicts the performance comparison of number of features extracted by using two different data association 

methods. In order to obtain enough robust landmarks for the environment map during a SLAM task, the level-shifted 

method has to extract 5.71 times of the number of image features. On the other hand, the fuzzy method only has to extract 

4.66 times of the number of image features. Therefore, it is concluded that the fuzzy method is more efficient than the 

other in searching for the robust visual landmarks. 

 

 
Fig. 7: Performance of feature matching for fuzzy searching window. 

 

 
Fig. 8: Performance of feature matching for level-shifted researching window. 

 
Table 3: Performance comparison of data association methods. 

 

 
landmarks

of No.  
features

extracted of No.  
landmarks of No.

features of No.  

1. Level-shifted 196 1,119 5.71 
2. Fuzzy 205 956 4.66 

 

5. Conclusions 
 We developed an algorithm for aerial robot simultaneous localization and mapping using a monocular vision sensor. 

In this paper, we developed the procedures of data association to construct a persistent environment map. The fuzzy rule-

based data association could efficiently search for the robust visual landmarks for robot mapping within a predicted search 

window. We also extend the usability of SURF detectors in SLAM tasks by using its robust representation of visual 

landmarks. The SURF features were detected from the images to build the environmental map. For each SURF feature, the 

state was initialized by one 6D vector using inverse depth parameterization method. We solved the problems of 

determining the map scale as well as initializing new landmarks by utilizing an ultrasound range detector. For the aerial 

robot SLAM system, the map scale was determined from the pixel coordinates of image features and the distance 

information provided by an ultrasonic sensing system. Two experiments were carried out to validate the performance of the 

vector aerial robot SLAM systems. The experimental results showed that the EKF-SLAM can deal with the data 

association problem and correctly estimate the robot pose with a standard deviation of less than 10 cm. 
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