
Proceedings of the 2nd World Congress on Electrical Engineering and Computer Systems and Science (EECSS’16)
Budapest, Hungary - August 16 - 17, 2016
Paper No. MVML 104
DOI: 10.11159/mvml16.104

Feature Selection with a Budget

Matthias Richter1, Georg Maier2, Robin Gruna3, Thomas Längle4, and Jürgen Beyerer5
1,5Karlsruhe Institute of Technology

Adenauerring 4, 76131 Karlsruhe, Germany
matthias.richter@kit.edu; juergen.beyerer@kit.edu

1,2,3,4,5Fraunhofer IOSB
Fraunhoferstr. 1, 76131 Karlsruhe, Germany

georg.maier@iosb.fraunhofer.de; robin.gruna@iosb.fraunhofer.de; thomas.laengle@iosb.fraunhofer.de

Abstract - Feature selection is an important step in all practical applications of pattern recognition. As such, it is not surprising that during
the past decades it has received a lot of attention from the research community. The topic is well understood and many methods have been
put to the test. Most methods, however, overlook an aspect critical to real-time applications: limited computation time. The set of selected
features must not only be suitable to solve the task, but must also ensure that the task can be solved within the available time. With this in
mind, we propose a method for feature selection with a budget. We approach the problem by stating feature selection as a multi-objective
optimization problem. This problem is solved using the well known NSGA-II algorithm. We evaluate our approach using one synthetic and
two real-world datasets. We explore the properties of the genetic algorithm and investigate the classification performance of the resulting
selections. Our results show that the selected feature sets are highly suitable, especially when considering real-time systems.

Keywords: Feature selection, multi-objective, evolutionary algorithm, pattern recognition, real-time systems, visual inspection

1. Introduction
The selection of informative features is an important step in any pattern recognition system. On the one hand, it reduces

model complexity and allows users to interpret the system more easily. On the other hand, it often improves prediction
performance: it is well known that too many features have adversarial effects in that regard [10]. Systematic approaches to
feature selection (often also called variable selection) can be traced back to the 1970s [1, 22, 16] and the community has since
produced a large arsenal of different methods, each with their own advantages and drawbacks. A review of these methods is
out of scope of this paper; interested readers are instead referred to the recent summary by Chandrashekar and Sahin [4].

For the purpose of this paper, the feature selection problem is formalized as follows: Given a set T = {(xn,yn)|n = 1..N}
of N training samples xn and associated labels yn and a set F = {φd(·)|d = 1..D} of D feature extractors φd(·) that map training
samples to scalar features1, the goal is to select a subset S? ⊆ F so that some utility function U(S,T) is maximized:

S? = argmax
S

U(S,T). (1)

Different approaches to feature selection may be distinguished in the way S is constructed. For example, features
may be selected by iteratively adding informative features, iteratively removing non-informative features, or by repeated
random sampling. More importantly, however, methods differ in how U(S,T) is calculated. Correlation based feature selection
(CBFS) [8], for example, defines the objective as

UCBFS(S,T) =
kryS√

k+ k(k−1)rSS
, (2)

where k = |S| is the number of selected features, ryS denotes the mean correlation of class labels and features, and rSS denotes
the mean correlation between the selected features.1A feature describes some property of a particular object, while a feature extractor is the method to do so. However, we (as many others) use the terms
interchangeably when the meaning is clear from the context.

MVML 104-1

Equation (2) illustrates a common theme in most (if not all) feature selection methods: the utility function is sensitive to
the number of selected features. More precisely, the aim is to minimize the number of selected features, while keeping their
utility at a maximum. This is reasonable, as more features mean that a more complex and hence more error-prone classifier is
needed. In practical applications, however, one is typically not interested in the smallest number of most discriminative features,
but instead in the most discriminative features that require the least computational effort. It is often implicitly assumed that the
two are the same, but they are not: If a selection Sa and a smaller selection Sb provide the same discriminative power, but Sa is
faster to compute than Sb, one should prefer Sa over Sb. However, most feature selection methods will favour Sb instead.

This aspect is especially relevant in real-time applications such as human computer interaction, robotics, and automated
visual inspection. The latter serves as the main motivation for our work. In visual inspection, especially in sorting of bulk
material, it can even be acceptable to sacrifice prediction performance in order to reduce the computational cost and meet the
deadline when the system is under heavy load. In such a scenario, it may also be favourable to take the variance of computation
cost into account. Consider, for example, canonical features such as color moments, compactness or point symmetry. The time
required to compute these features directly depends on the size of the objects. If one expects to encounter objects of vastly
different sizes, such features should be sparingly selected to reduce the risk of missing a deadline.

1.1. Contributions
In this paper, we propose a feature selection method that takes the computational cost of each feature into account.

We formalize the method as a multi-objective optimization problem: maximizing utility while minimizing the expected
computational cost. We employ the well known genetic algorithm NSGA-II [5] (non-dominant sorting genetic algorithm) to
approximate the set of Pareto optimal solutions, i.e. solutions that dominate all other solutions with respect to at least one
objective. Given this set of solutions, it is up to the user to decide upon a suitable set of features. We suggest a method to aid
this decision. We apply our method to two bulk-good sorting scenarios as well as an augmented synthetic dataset from the
2003 NIPS feature selection challenge [7]. Where other methods either return just a single set of features or disregard their
computational cost altogether, our approach yields a more dense representation of the whole Pareto-front of optimal solutions.
To our best knowledge, this is the first time this has been done.

2. Related Work
Early genetic algorithm (GA) based approaches to the feature selection problem include [21] and [25]. In the latter,

Yang and Honavar consider a wrapper approach based on an inter-pattern distance-based neural network learning algorithm.
Two criteria, namely the accuracy of the neural network classifier and the cost of the feature selection are combined into
a single objective. The authors motivate feature cost by the examples of financial expense as well as risks associated with
corresponding medical procedures required to obtain a specific feature, but do not make the connection to computation time.
In their experiments, they demonstrate that the combined fitness function outperforms a fitness function that only considers
the accuracy of the feature subset. In [11], Iswandy and Koenig also consider the costs of selected features. They select
features using both GA and particle swarm optimization (PSO) and show that the latter has better convergence characteristics.
Like Yang and Honavar, however, they combine the two goals into a single objective function instead of performing direct
multi-objective optimization. Paclı́k et al. consider a group-wise forward selection, where features are added to the selection
one after another [17]. When features are added, they do not only consider the performance gain, but also the additional time
needed to compute the feature. Their criterion effectively favours cheap features that provide a small performance gain over
better, but more expensive ones. Plasberg and Kleijn follow a similar route and introduce a complexity term into forward
feature selection based on mutual information [18]. They determine optimal feature sets for different trade-offs of cost and
utility in a grid search and use the selection that maximizes the mutual information between selection and labels.

Common to all these approaches is that they optimize a single objective function despite pursuing multiple optimization
goals. That is not to say that multi-objective optimization has not been utilized in the context of feature selection. Morita et
al., for example, utilize NSGA in the context of handwritten word recognition [15]. They define two objectives, where the
first one maximizes the separation of clusters in the feature space, while the second one minimizes the number of selected
features. Similarly, Hamdani et al. use NSGA-II to minimize classification error of a nearest neighbor (1-NN) classifier as well
as the number of features [9]. The same approach is used by Tekgüç et al. in the context of facial expression recognition [23].
However, instead of minimizing the classification error of a 1-NN classier, they maximize the separation of classes as measured
by the Fisher criterion. Xue et al. compare different multi-objective optimization methods including GA and PSO techniques
in the context of feature selection [24]. The optimization goals are again to maximize the performance of a classifier and
to minimize the number of selected features. Recently, Saroj proposed three criteria to select features: information gain,
non-redundancy, and size of the selection [20]. The author independently optimizes all three goals using NSGA-II and compares
the result against a GA that optimizes a single objective function that averages over all three criteria. The results of the analysis
are inconclusive. While all of these methods utilize multi-objective optimization, none takes computation time into account.

Genetic algorithms have also been used to learn—as opposed to select—features. Ebner uses Cartesian Genetic
Programming to evolve image processing routines to detect moving objects [6]. Processing pipelines are assembled from

MVML 104-2

primitive operations implemented on a GPU so that the output images encode the likely position of moving objects. The fitness
of a pipeline is assessed according to the distance of the detected position and the ground truth. In the context of automated
visual inspection, Burla et al. apply genetic programming to obtain image processing procedures that are represented by
processing graphs [3]. The output images are binarized and treated as encoding location of surface defects. The fitness of a
processing pipeline is computed from defect detection performance on a validation set. Lillywhite et al. use a similar method to
derive processing pipelines for general object detection [13]. None of these methods take computation time of the processing
pipeline into account.

3. Methods
As mentioned in the introduction, our goal is to find sets of features that maximize utility and minimize computational

cost. In order to do the latter, we define c(φd(xn)) to be the cost for feature φd extracted from xn. The cost can be measured
(e.g., computation time in ticks) or specified in advance (e.g., monetary costs to obtain the feature). We then compute the
empirical mean and standard deviation of the costs over the dataset,

c(φd) =
1
N

N

∑
n=1

c(φd(xn)), and σc(φd) =

√
1

N−1

N

∑
n=1

(
c(φd(xn))− c(φd)

)2
.

To simplify the notation, we collect the mean costs and cost scatter in vectors, c = (c(φ1), . . . ,c(φD))
> (σ c likewise).

Similarly, a selection S is represented by the vector

s = (1S(φ1), . . . ,1S(φD))
> ∈ {0,1}D, (3)

where 1S(φ) indicates the membership φ ∈ S. Now, a selection criterion can be written as

U(S,T) = u(s;T)−λ s>c−µs>σ c, (4)

where u(s;T) ∈ R denotes the utility of S without regard to the number of features. We will define suitable utility functions in
section 3.3. Note that this formulation includes “conventional” feature selection methods: If all costs are the same, the scatter
term will be 0 and eq. (4) will amount to selecting the minimal number of most discriminative features.

An issue that already surfaced in section 2 is how λ and µ should be balanced. As the answer depends on the goal—fast
prediction or low risks—as well as the choice of utility function, we can (and do) not provide a general answer. Instead, we
opt to present the user with a set of possible solutions to choose from. We compute this set of possible solutions using the
multi-objective optimization algorithm NSGA-II.

3.1. NSGA-II
Before moving on to feature selection, we briefly introduce NSGA-II. A detailed discussion of the algorithm and its

properties can be found in the original paper [5]. NSGA-II is a genetic algorithm to minimize a vectorial objective function. An
initial population of solution candidates is randomly sampled and ordered according to their fitness. By recombining solutions
from the initial population and slightly changing (mutating) the newly created individuals, the population is expanded. The
population is again sorted by fitness and only the fittest individuals are retained. The process is repeated until a stopping
criterion is met. More formally, let Pt = {sn|n = 1..N} denote the population of solutions at step t and let sp and sq denote two
parent solutions. The offspring is created as so = mutate(crossover(sp,sq)). How to select parents and carry out crossover and
mutation is not further specified. The offspring and Pt are collected into an intermediate population, Ot , and a fitness function
f is used to define a (partial) ordering si < f sk on Ot . The top N solutions of Ot are kept as the new population Pt+1.

The key to NSGA-II is how this ordering is constructed. Deb et al. suggest two criteria: nondomination rank and
crowding distance [5]. The nondomination rank of a solution s is computed using the domination count: the number of other
solutions sn that dominate s with respect to at least one optimization-goal. The solutions with domination count 0 are assigned
the nondomination rank 1. Next, the count of all solutions dominated by solutions with rank 1 is reduced by the number of
such solutions. Solutions with updated domination count 0 are assigned the rank 2. The process is repeated with increasing
nondomination ranks until all solutions are ranked. The nondomination rank effectively encodes the distance to the Pareto
front: solutions with rank 1 reside on the Pareto front, solutions with rank 2 are one step removed from the Pareto front, etc.

Nondomination rank alone would be sufficient to induce an ordering of P. To encourage diverse populations, however,
solutions of equal rank are additionally sorted according to their crowding distance. The crowding distance of s is the perimeter
the cuboid spanned by the nearest solutions that have the same rank as s. Therefore, the crowding distance is inversely related
to the local density around s. NSGA-II assigns a higher fitness to solutions with a higher crowding distance—solutions in
locally sparse regions—than to solutions with a smaller crowding distance.

MVML 104-3

3.2. Genetic Encoding and Genetic Operations
Encoding a selection is straightforward: the “genome” of a solution is the selection vector from eq. (3). Crossover and

mutation are canonical: In the former, the entries of a new individual are randomly sampled from either parent with equal
probability. The latter flips each entry in the offspring with probability 1/D. Parents are selected by tournament selection: For
each parent, two candidates are selected at random and the one with better fitness is chosen as parent solution. We stop the
genetic algorithm after a maximum number of populations has been computed.

The objective function covers the same criteria as eq. (4): maximization of the selection’s utility and minimization of the
expected cost and cost scatter. As NSGA-II minimizes its objective, the objective function becomes

ω(s) =
(
−u(s;T),s>c,s>σ c

)>
. (5)

Note that the cost-criteria make the assumption that the cost of a feature is independent of the selection. This is, of
course, a simplification. In reality, some features are computed from other features (e.g., color moments, principal axis length,
. . .) and need less computation time if these features are already selected. For the sake of simplicity, however, we assume that
the impact of this dependence is negligible.

3.3. Utility functions
What remains open is the choice of utility function. Here, we explore a filter and wrapper approach to feature selection.
Filter. The filter approach is inspired by CBFS [8], that is, we wish to select features that show high correlation with

the labels. Unlike CBFS, however, we compute the multiple correlation coefficient (e.g., [12], pp. 225–227) between labels and
the selected features instead of the mean correlation between labels and features. With RSS (where rik = ρφiφk) denoting the
matrix of pairwise correlation coefficients between the selected features and rSy = (ρφ1y, . . . ,ρφ|S|y)

> denoting the vector of
correlation coefficients between labels y and the features in S, the multiple correlation coefficient can be calculated as

umcorr(s;T) =
√

R2 =
√

r>S,yR−1
SS rS,y. (6)

Note that, unlike other filter approaches, this criterion does not discourage redundancy of selected features. In our
framework, this aspect is covered by the other optimization goals in eq. (5). In fact it might even be favourable to select
correlated features, provided that these features increase the overall prediction performance without requiring too much
additional computation time.

Wrapper. Wrapper methods determine the utility of a selection using the performance of a predictor trained on the
selected features. Usually this means high computational load, since the predictor has to be first trained and then evaluated,
possibly in cross-validation. In a genetic algorithm this is prohibitive, because the utility has to be computed for every individual
in the current population. However, if we choose (multiclass) LDA as classifier, we can skip the evaluation and use the LDA
criterion as proxy for the classification performance instead,

uLDA(s;T) = J(W) = Tr
{(

WSWW>
)−1(

WSBW>
)}

. (7)

Here, SW denotes the within-class scatter matrix of the selected features, SB denotes the between-class scatter matrix of
the selected features, and W is the projection matrix that maximizes the LDA criterion (see, e.g., [2], pp. 186–192 for more
details). A similar approach was used by Richter and Beyerer [19], although only in a two-class scenario.

4. Experiments
In the following, we describe our experiments to evaluate our method. We used three datasets for validation. One dataset

is synthetic, while the two other represent real world sorting problems.

4.1. Synthetic Data
The 2003 NIPS feature selection challenge provided five datasets to evaluate feature selection algorithms [7]. The

artificial Madelon dataset consists of 2 600 samples and 500 features per sample. The dataset was constructed in a way that no
single feature is informative on its own. As this dataset does not include feature costs, we augmented each feature instance
by randomly sampling a cost. The costs were drawn from a normal distribution N(µφ ,σφ) where the parameters µφ and σφ

were uniformly sampled (µφ ∼U(0,100) and σφ ∼U(0.01,5)) for each individual feature φ . Note that we did not take into
account whether the feature was informative or not when sampling the costs. This means that uninformative features may be
favoured by a selection that minimizes costs alongside utility.

MVML 104-4

Table 1: Overview of the datasets. In the lego dataset, all classes except class 8 contain bricks of different colors.

Dataset Class Description Sample Count Example Image

Lego 1 2×2 Lego bricks 380

Lego 2 2×3 Lego bricks 330
Lego 3 2×4 Lego bricks 438
Lego 4 Lego Technic cross-profile axles of different sizes 468
Lego 5 Lego Technic bricks of sizes 1×2 to 1×16 371

Lego 6 Lego bricks of size 1×1 to 1×8 367
Lego 7 Lego Technic connector bricks 415
Lego 8 Lego Technic connector bricks of two different lengths 366

Stones 1 Round, gray pebble stones with dark spots 1212

Stones 2 Blue-gray pebble stones with light spots 3418

(a) Madelon, 500 generations 250 individ-
uals, mcorr utility.

(b) Madelon, 500 generations, 250 indi-
viduals, LDA utility.

(c) Lego, 100 generations, 150 individu-
als, mcorr utility.

Fig. 1: Final population in the objective space. With the synthetic dataset solutions spread, while with real datasets they tend to cluster.

4.2. Real-world Data
Additionally to the synthetic data, we created two datasets representing bulk material sorting problems. For this purpose,

an existing sorting system consisting of two line scan cameras was used to record images of Lego bricks and pebble stones. A
total of 44 standard features—geometric features such as area, compactness, length and width, as well as color features like
color moments of multiple orders—were extracted for each object in the images. The computation time required for calculating
the features was also recorded. Consequently, in both datasets each sample is described by the assigned class label as well as a
feature vector of length 44 as well as 44 associated costs in terms of required computation time.

The first dataset was obtained using various Lego bricks and hence will be referred to as “Lego” in the following. It
includes eight classes of different bricks as depicted in Table 1 and consists of a total of 3135 samples. This dataset serves as
a prototype for sorting problems that involve man-made, manufactured objects with moderate intra-class variance but high
similarity between (some) classes. Such tasks are challenging because under some viewing angles different objects may look
the same. For instance, class 5 and 6 may only be discriminated from a side view, whereas class 1, 2 and 3 look the same when
viewed from the (short) side.

For the second dataset, images of two different kinds of pebble stones were recorded and will be denoted as “Stones” in
the remainder of this paper. It consists of two classes of stones and a total of 4630 samples as also depicted in Table 1. In
contrast to the Lego dataset, this dataset represents natural bulk material, where the intra-class variance is high, but classes can
be more easily discriminated. As such, this dataset is representative for challenges on the other side of the spectrum. This
ensures that our method is not only suitable for one type of sorting problems.

MVML 104-5

(a) Madelon, 250 individuals, LDA utility. (b) Lego, 250 individuals, mcorr utility. (c) Stones, 150 individuals, mcorr utility.

Fig. 3: Population change per generation. After large initial changes, the algorithm converges quickly. Note the different scales.

(a) Utility of the whole population.

(b) Mean cost of the whole population.

Fig. 2: Change in objective function with the
Lego dataset (250 individuals, mcorr utility).
The white line shows the mean over the pop-
ulation while the shaded area shows the 2σ

interval.

4.3. Properties of the genetic algorithm
To verify our method, we ran NSGA-II with a varying population size and

for a varying number of generations. Fig. 1a and Fig. 1b show the final population
of a run on the Madelon dataset. The mcorr-criterion (eq. (6)) produces similar
results as the LDA-criterion (eq. (7)) in the sense that the distribution of mean
cost and cost scatter is similar. In this dataset, higher utility of a selection means
higher computation time and more cost scatter. There is no clear best solution
nor are there any visible clusters. Note, however, that the dataset was artificially
created and the costs were randomly sampled, so this result is to be expected.
With real data, the situation presents itself differently. Fig. 1c shows the 100th
generation of a run on the Lego dataset. While there is no clear “best” solution,
one can make out several distinct clusters corresponding to different mean costs.
Interestingly, most clusters do not show large variety in utility. In contrast to the
Madelon dataset, the relationship between mean cost and cost scatter is not linear.
Similar observations can be made with the Stones dataset (not shown).

Fig. 3 shows the relative change in population for all datasets. With both
synthetic and real-world data, the algorithm quickly stabilizes. However, with the
Madelon dataset, convergence takes considerably longer than with the the real-
worlds datasets. This may be caused by the vastly larger number of features (500
in Madelon, 44 in Lego and Stones), but can also be attributed to the clustering
property of the real-world datasets (cf. fig. 1c). The quick convergence is confirmed
in fig. 2—after generation 30 the utility is not significantly changed until generation
60, where an inferior solution was replaced. Again, with the synthetic dataset (not
shown) the convergence is slower and less pronounced.

4.4. Goodness of selection
We now turn our attention to the selected features. We evaluated the good-

ness of each selection in a stratified 10 fold cross-validation, where we trained a
SVM classifier with RBF kernel on the selected features. We did not perform any
parameter tuning, but normalized the features to zero mean and unit variance prior
to the training.

We used Matthews Correlation Coefficient (MCC, [14]) as a metric. In a
two-class setting, it can be interpreted as the correlation between ground truth and
prediction:

MCC =
TP ·TN−FP ·FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
. (8)

Here TP (TN,FP,FN) denote the number of true positive (true negative,
false positive, false negative) classifications. To adapt MCC to a multi-class setting,
we computed the metric for each class individually and averaged over the results.

MVML 104-6

(a) Madelon dataset.

(b) Lego dataset.

(c) Stones dataset.

Fig. 4: Mean abs MCC vs. deadline. The labels indicate the
selection method (e.g., LDA), the identifier of the individual (if
applicable) and the number of selected features (best viewed in
color).

As we are interested in real-time applications, more specifi-
cally the sorting of bulk material, we simulated varying deadlines.
For each deadline, we counted the number of misses and changed
the prediction label of missed samples to an additional “missed”
class. We compared our method against CBFS (eq. (2)) with
greedy forward-selection. Features were selected exhaustively
until all features were selected, but only the selection with highest
utility was kept. As CBFS does not take computation time into
account, this comparison is not really fair, but serves to illustrate
the point that good selections are not necessarily good in terms
of computation time. Additionally, we compared our method
against GFS [17] on the Lego dataset (without feature grouping—
grouping information was not available in the datasets). Again,
multiple solutions corresponding to different deadlines were com-
puted, but unlike CBFS, all solutions were considered in the
evaluation.

The results are summarized in fig. 4. With the Madelon
dataset, all solutions selected by our method (three of them shown
in fig. 4a) perform worse than the baseline. However, none of
the solutions, including the baseline, perform particularly well.
It is noteworthy that with all solutions the mean MCC is 0, but
almost instantly saturates when some deadline threshold is ex-
ceeded. This threshold as well as the peak performance is related
to the number of selected features: more features result in worse
performance and a larger deadline threshold. We attribute this be-
haviour, which is foreshadowed in fig. 1, to our random sampling
of costs and the designed difficulties in selecting informative fea-
tures. With the real-world datasets, CBFS is outperformed in both
maximum prediction performance as well as computation speed.
Especially in fig. 4c it can be seen that a small number of features
does not automatically result in good real-time characteristics.
Even though the selection with highest peak MCC (Individual
103, LDA criterion) contains more features as the baseline selec-
tion, the selection is much faster to compute. Similar observations
can be made in fig. 4b. Here, it can be seen that one should favor
a fast feature set (LDA individual 143) when the deadline is tight,
but should switch to a different set when the conditions are more
relaxed. It can also be seen that our method outperforms GFS,
which, unlike CBFS, takes computation time into account. The
first GFS selection also shows a step-like performance curve, in-
dicating that certain discriminate, but expensive features become
“active” once enough time is available to compute them.

From our experiments, it is not clear whether the filter
approach (mcorr utility) or the wrapper approach (LDA utility)
yield overall better results. Which is to be preferred depends
on the data set. However, with both the Lego and the Stones
datasets, it can be seen that certain solutions are to be preferred
under certain real-time conditions. Such an analysis of classifier
performance against simulated deadlines can be used to aid the
user in the selection of a suitable feature set for certain situations.
It can also be used to automate this decision.

5. Conclusion
In this paper, we presented a novel method for multi-objective feature selection with genetic algorithms. In contrast

to other methods, we explicitly take the computation time of the selected features into account. The method is conceptually
simple, easy to implement, and allows alternate utility functions, e.g., based on mutual information, as well as additional
optimization goals such as the measurement uncertainty of a feature. We verified our method with one synthetic and two

MVML 104-7

real-world data sets from the realm of bulk material sorting. We find that with real-world datasets, the selected feature sets are
highly suitable, especially when considering real-time systems. From our analysis it is not clear whether a filter or a wrapper
criterion is superior. Which is more suitable depends on the dataset.

As mentioned in section 3, the cost of each feature is assumed to be independent from the selection. In the future, we
plan to investigate how dependencies between features can be exploited, for example by modelling these dependencies in
a graph structure. Furthermore, we will investigate whether switching to a less accurate, but faster set of features while a
system is running can be beneficial to a real-time system under heavy load. In this context, we will also investigate methods to
automatically identify which set is most suited for a given system load.

References
[1] H. Akaike. A new look at the statistical model identification. Automatic Control, 19(6):716–723, 1974.
[2] C. M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.
[3] A. Burla, T. Haist, W. Lyda, and W. Osten. Genetic programming applied to automatic algorithm design in multi-scale

inspection systems. Optical Engineering, 51(6):067001–1, 2012.
[4] G. Chandrashekar and F. Sahin. A survey on feature selection methods. Computers & Electrical Engineering, 40(1):16–28,

Jan. 2014.
[5] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic algorithm: NSGA-II. In

Evolutionary Computation, volume 6, pages 182–197, Apr 2002.
[6] M. Ebner. Towards Automated Learning of Object Detectors. In Applications of Evolutionary Computation, number

6024 in Lecture Notes in Computer Science, pages 231–240. Springer Berlin Heidelberg, Apr. 2010.
[7] I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror. Result analysis of the nips 2003 feature selection challenge. In Advances in

Neural Information Processing Systems, pages 545–552, 2004.
[8] M. A. Hall. Correlation-based Feature Selection for Machine Learning. PhD thesis, The University of Waikato, 1999.
[9] T. M. Hamdani, J.-M. Won, A. M. Alimi, and F. Karray. Multi-objective Feature Selection with NSGA II. In Adaptive

and Natural Computing Algorithms, Lecture Notes in Computer Science, pages 240–247. Springer Berlin Heidelberg,
2007.

[10] G. Hughes. On the mean accuracy of statistical pattern recognizers. IEEE Transactions on Information Theory,
14(1):55–63, Jan. 1968.

[11] K. Iswandy and A. Koenig. Feature selection with acquisition cost for optimizing sensor system design. Advances in
Radio Science, 4(7):135–141, 2006.

[12] M. H. Kutner, C. J. Nachtsheim, J. Neter, and W. Li. Applied Linear Statistical Models. McGraw-Hill/Irwin series.
McGraw-Hill Irwin, 2005.

[13] K. Lillywhite, D.-J. Lee, B. Tippetts, and J. Archibald. A feature construction method for general object recognition.
Pattern Recognition, 46(12):3300–3314, 2013.

[14] B. Matthews. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Bio-chem Biophy
Acta, 405(2):442–451, Oct. 1975.

[15] M. Morita, R. Sabourin, F. Bortolozzi, and C. Y. Suen. Unsupervised feature selection using multi-objective genetic
algorithms for handwritten word recognition. In 2013 12th International Conference on Document Analysis and
Recognition, volume 2, pages 666–666. IEEE Computer Society, 2003.

[16] P. M. Narendra and K. Fukunaga. A Branch and Bound Algorithm for Feature Subset Selection. Computers, C-26(9):917–
922, Sept 1977.

[17] P. Paclı́k, R. P. W. Duin, G. M. P. v. Kempen, and R. Kohlus. On Feature Selection with Measurement Cost and Grouped
Features. In Structural, Syntactic, and Statistical Pattern Recognition, number 2396 in Lecture Notes in Computer
Science, pages 461–469. Springer Berlin Heidelberg, Aug. 2002.

[18] J. Plasberg and W. Kleijn. Feature Selection Under a Complexity Constraint. Multimedia, 11(3):565–571, Apr. 2009.
[19] M. Richter and J. Beyerer. Optical filter selection for automatic visual inspection. In Winter Conference on Applications

of Computer Vision (WACV), pages 123–128. IEEE, 2014.
[20] Saroj and Jyoti. Multi-objective genetic algorithm approach to feature subset optimization. In Advance Computing

Conference (IACC), pages 544–548, Feb 2014.
[21] W. Siedlecki and J. Sklansky. A note on genetic algorithms for large-scale feature selection. Pattern recognition letters,

10(5):335–347, 1989.
[22] S. D. Stearns. On selecting features for pattern classifiers. In International Conference on Pattern Recognition, pages

71–75, Coronado, CA, 1976.
[23] U. Tekguc, H. Soyel, and H. Demirel. Feature selection for person-independent 3D facial expression recognition using

NSGA-II. In Computer and Information Sciences, pages 35–38. IEEE, 2009.
[24] B. Xue, M. Zhang, and W. Browne. Particle swarm optimization for feature selection in classification: A multi-objective

approach. Cybernetics, 43(6):1656–1671, Dec 2013.
[25] J. Yang and V. Honavar. Feature subset selection using a genetic algorithm. In Feature extraction, construction and

selection, pages 117–136. Springer, 1998.

MVML 104-8

	Introduction
	Contributions

	Related Work
	Methods
	NSGA-II
	Genetic Encoding and Genetic Operations
	Utility functions

	Experiments
	Synthetic Data
	Real-world Data
	Properties of the genetic algorithm
	Goodness of selection

	Conclusion

