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Abstract - In this paper we present a new motion recognition algorithm based on skeleton and depth map data extraction from two 

generations of the Kinect sensors as a first step to support manufacturing process optimization. A real production line activity was 

simulated in a laboratory environment and a specific motion - the barcode scanning - was recognized and validated by semi-automated 

log file processing. We show that the proposed methods give appropriate accuracy by using whichever Kinect sensor. 
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1. Introduction 
 Optimization of production lines can increase the efficiency of the manufacturing system. To find an effective 

solution to this problem optimization algorithms need a lot of input information. The main goal of our research is to 

automatically ensure sufficient information for the product line optimization methods in a computer assembly factory.  

 Several researches were carried out in the 80’s [1] showing the importance of the ergonomics of the assembly 

workstations. Although the aim is to fully automatize manufacturing processes, in some cases the production line employee 

could not be replaced with robotic techniques, by the reason of the frequent changeovers, the new and small amount 

products. Moreover, some production processes are too complex and difficult to be automatized by current technology. So 

the ergonomic and fast work of the employee is required for the optimal production of the factory and should be taken into 

account at the optimization method as an important factor. 

 One possibility to get sufficient information about the time requirement of a workstation is following the products. 

This method does not provide any information about the effective working time and the time requirement, it only shows 

the actual throughput capacity. Another possibility is the recognition of gestures and motion of workers. In this article we 

introduce the first step of our research, a method for cycle time estimation in industrial environment based on skeleton and 

depth data of a Kinect sensor that are analyzed with data mining methods. Another contribution of our work is showing the 

efficiency differences between the different generations of Kinect sensors in such an application.  

 Gesture recognition is an active research area in the field of computer vision. The goal is often to understand only 

hand gestures [2][3], in other cases we would like to recognize whole body gestures [5][4]. Initial data used for the 

extraction of high-level information is divided into three main groups: depth-map [6], 3D point cloud [2] and skeleton 

information [5][4].  

 In [2] the first step is to find one point of the hand using a 3D hand tracking algorithm. Then the hand region is 

segmented out from depth image and is converted to a point cloud. For the segmentation they use a 1-d connect component 

selection algorithm. From the point cloud information 3D moment invariants are computed. Finally, the Support Vector 

Machine (SVM) is applied for the classification. 

 Eight hand and head gestures are distinguished in [6] using solely depth information. The first step of this method is 

segmentation aiming at separating the human body and the background. This is done by using auto thresholding on the 

depth histogram. The threshold is found from the valley following the first large peak of the histogram. The foreground 

depth image is divided into 14x14 elements and each grid element is parameterized with depth change and motion 

information. The depth information for a grid element is divided into not equal parts and the corresponding pixels are 

counted and normalized. The motion information for a grid element is also calculated from the depth image. The 

successive depth images are subtracted from each other, next noise reduction is carried out and then the result is converted 
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to a binary image, where white pixels represent the motion content. White pixels in a grid element are normalized. 

Multiclass SVM is used in training the 8 gesture-classes. 

 [5] deals with challenging tasks, such as the real-time implementation of a gesture recognition system, the temporal 

resolution of gestures and the task of creating a user independent gesture classifier. They compute node angles and node 

quaternion from the initial skeleton information, and then 10 different right hand gestures are distinguished by a neural 

network using positive and negative examples. A backpropagation algorithm is used for the training phase, as the best 

configuration the hidden nodes are selected. The gesture lengths are dependent on the person, so they apply person re-

identification module based on mainly silhouette segmentation and a connected graph in which the nodes contain the color 

histogram of the region and the edges containing the neighborhood information. Furthermore, they apply the Fast Fourier 

Transformation (FFT) and tacking the position of the fundamental harmonic component, the period could be evaluated as 

the reciprocal value of the peak position, so the gesture lengths are estimated. 

 In [4] 6 body gestures are distinguished based on skeleton information. The extracted feature vector contains the 

joint coordinates, 3 xyz-velocities per joints, 35 joint angles and 35 joint angular velocities. Besides extracting angles 

between adjacent segments, they also place an imaginary joint to (0, 0, 0) in world coordinates, which is the location of the 

camera. The feature vectors are classified using three methods: Naive Bayes, SVM and Random Forest. 

 In [7] the goal is to be able to distinct 10 gestures, where they combine the skeleton joint angles and the relative 

position of 6 arm joints and the head joint. K-means is used for clustering and the new gestures are classified using a 

Euclidean distance metric.  

 In [3] the goal is to recognize hand gestures and match them with different meanings (for example the V – means 

Victory or number two). So this task requires the identification of fingers. The first step is to detect the hand on the depth 

image, then a contour tracking algorithm detects the contours of the hand. The next step is the identification of fingers and 

a three-layer-classifier: finger counting, finger name collecting, and vector matching.  

In the industrial environment the pose estimation for planning ergonomic motion is very frequent [8]. 

 

2. Related Techniques 
 
2.1. Descriptors 

 In our method we use a depth map similar to [6] and a skeleton like in [4] [5] as input data. Our goal is to compare 

data deriving from different generations of Kinect sensors [9]. The extracted information is shown on fig. 1. 

 

 
Fig. 1: Data provided by two different generations of Kinect sensors. 

 

 For the descriptor that is based on the depth map the first step is the human body segmentation (fig. 3). For this task 

we apply one of the Kinect SDK classes (named BodyIndexFrame) that represents a frame with depth or infrared pixels 
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belonging to tracked people. (This task in [6] was performed with histogram thresholding, but we have found it is less 

effective than BodyIndexFrame.) We perform histogram equalization on the depth image after the human body is 

segmented (fig. 3), so we get more detailed depth information. 

 Then the image without the background is divided into 196 blocks and every block is descripted by depth changing 

and motion information as follows. 

 In case of the depth information the histogram belonging to one of the blocks is divided into more different sized 

ranges (0-20, 21-30, 31-40, 41-50, 51-60, 61-80, 81-100, 101-120, 121-165, 166-255 and we count the pixels belonging to 

these ranges, then these values are normalized. 

 Motion information is also extracted from the depth image. The successive depth images are subtracted from each 

other. We perform noise reduction on the difference images and convert them to binary images on which the white pixels 

denote motion content. These binary images are also divided into 196 blocks, and we count the white pixels in each block 

then normalize these values. 

 

 
Fig. 2: Depth image sequence after the human body segmentation (every 10th frame). 

 

 The length of the final depth image-descriptor is 2156. The depth information includes 196 blocks with 10 ranges-

information and the motion information includes 196 blocks information. 

 In case of the other descriptor, which is based on the skeleton information, we also use temporal and spatial features 

as [4], but we calculated the displacement every second, based on a time stamp instead of calculating it for every 35 frames 

as in [4]. We have decided to do so because the Kinect sensor data frame rate is not consistent, it depends on how busy the 

sensor is. The 190 length feature vector is structured as follows: x,y,z coordinates of joints (60); x, y, z displacement per 

second (60); joint angles (17) (fig. 4); joint angles changes per second (17); joint-camera angles (18); joint-camera angles 

(fig. 4) changes per second (18). 
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Fig. 3: Processing of a depth image: human body segmentation; histogram equalization of human body depth image; dividing it into 

196 blocks. 

 

Fig. 4: Joint angles (green highlight); Joint camera angles (blue highlight). 

 
 
2.2. Classification 

 Three different classification trees and their fusions were applied on descriptors extracted from skeletons and depth 

images (fig.5). Classification and Regression Trees (CRT) [10] [11] splits the data into sections that are as 

homogeneous as possible with respect to the dependent variable. Chi-squared Automatic Interaction Detection 

(CHAID)[12] selects the independent variable that has the strongest relation with the dependent variable at each 

step by using Person’s Chi-square tests. Categories of each independent variable are merged if they are not 

significantly different with respect to the dependent variable. Quick, Unbiased, Efficient Statistical Tree 

(QUEST) [13] can use different statistic (F and 𝜒2statistic) for independent variable selection reducing the bias. 

All classification methods were validated by 10-fold crossvalidation. We applied Discriminant analysis [14] for 

the fusion of different classifiers’ results using predicted values and predicted probabilities. 
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Fig. 5: Classification methods. 

 

3. Experiment 
 In our lab we have artificially simulated a manufacturing environment. 6 people participated in the experiment, 

whom we observed with two different generations of Kinect sensors. The participants have tested 11 products. Their task 

was to investigate the products and look for any damages, then separate the damaged pieces from the intact items. As a 

first step in the product line optimization we would like to measure cycle times automatically based on information 

extracted from the Kinect sensor and using semi-automated validation produced by log process. The aim of our method is 

to recognize effectively the bar code scanning - one of the gesture of the product analysis. The cycle times are shown on 

fig. 6. 

 

 
Fig. 6: Cycle times for 6 different people. 

 

4. Results 
 The fused descriptor involved both skeleton and depth map and applied the three decision trees predictions give the 

best classification results (Overall Accuracy (OA) is 98.6 percent and F measure is 0.95) (Table 1). Both types of Kinect 

sensor can be used for this assignment, nevertheless the Kinect v2 provides better accuracy on average. 
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Table 1: Motion Recognition Results. 

 

Descriptor Method 
Overall 

Accuracy (%) 
F measure 

Kinect v1 depth CHAID 94.18 0.8059 

Kinect v1 depth CRT 95.14 0.8365 

Kinect v1 depth QUEST 93.78 0.7909 

Kinect v1 depth  late fusion 96.50 0.8863 

Kinect v1 skeleton CHAID 95.67 0.8157 

Kinect v1 skeleton CRT 93.57 0.8540 

Kinect v1 skeleton QUEST 94.01 0.7830 

Kinect v1 skeleton late fusion 96.66 0.8864 

Kinect v1 fusion CHAID 97.57 0.9242 

Kinect v1 fusion CRT 97.05 0.9060 

Kinect v1 fusion QUEST 96.40 0.8827 

Kinect v1 fusion late fusion 98.62 0.9558 

Kinect v2 depth CHAID 95.92 0.8674 

Kinect v2 depth CRT 95.27 0.8494 

Kinect v2 depth QUEST 96.53 0.8850 

Kinect v2 depth  late fusion 96.95 0.8882 

Kinect v2 skeleton CHAID 96.82 0.8914 

Kinect v2 skeleton CRT 95.88 0.8563 

Kinect v2 skeleton QUEST 96.73 0.8883 

Kinect v2 skeleton late fusion 97.07 0.8932 

Kinect v2 fusion CHAID 97.55 0.9160 

Kinect v2 fusion CRT 96.29 0.8687 

Kinect v2 fusion QUEST 97.03 0.8915 

Kinect v2 fusion late fusion 98.73 0.9527 

 

 The Receiver operating characteristic (ROC) curves (fig. 7) show the performance of the CHAID, QUEST and CRT 

classifiers. 

 

 
Fig. 7: ROC curves of CHAID (left), QUEST (middle), CRT (right) using late fusion of Kinect v1 data fusion. 

 

 The features obtained from skeleton data seem to be slightly more relevant then depth map descriptor with respect to 

not only the accuracy but also at the most important independent variables (fig. 7). Six pieces from skeleton descriptor 

(CamAng6_5 – means the camera angle between joint 6 and joint 5 (fig. 4.), HandRightVelocity_Z – means the z 

coordinate of the (HandRight) joint 4 displacement per second, WristRightVelocity_Z – means the z coordinate of the 

(WristRight) joint 3 displacement per second, CamAng5_4 and CamAng7_6 – means the camera angle between joint 5 and 

joint 4, and between joint 7 and joint 6) and four pieces from depth map descriptor (V1493, V1780, V1232, V1770) can be 

found among the 10 most important independent variables (Table 2). 
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Table 2: Importance and normalized importance of the 10 most important independent variables. 

 

Independent Variable Importance 
Normalized 

Importance 

CamAng6_5 0.128 100.0% 

HandRightVelocity_Z 0.123 96.1% 

WristRightVelocity_Z 0.104 81.3% 

CamVel6_5 0.064 49.4% 

V1493 0.060 47.0% 

V1780 0.045 35.4% 

CamAng5_4 0.045 34.8% 

CamAng7_6 0.044 34.5% 

V1232 0.043 33.3% 

V1770 0.042 32.7% 

 

 
Fig. 7: Importance and Normalized Importance of Independent Variable. 

 

5. Conclusion 
 Whereas the tendency is to completely automatize manufacturing processes, in some cases - e.g. for small lot-sizes 

or a high number of product variants - the manual work is necessary. The estimating of the cycle time is essential to the 

production process optimization. In this paper we showed, that our proposed method applying the skeleton and depth map 

data of the mass-produced and cheap Kinect sensors is appropriate to recognize human motion in an industrial 

environment. This was the first step for calculating theoretical life cycle time for utilization of the producing process 

optimization. 
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