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Abstract - This paper presents a method that aims to separate auditory event-related potentials (ERP) from noise.  In practice, ERPs 

would be approximated by weighted sums of Principal Component (PCA) basis signals calculated from clean data. Projection of measured 

signals onto the PCA subspace greatly reduces noise. A second step uses Kalman filtering to optimally combine the PCA filtered signal 

with the ERP expected before measurement. Much of the power of the proposed algorithm comes from exploiting apriori cross-channel 

information in the form of a PCA weight covariance matrix.  In this paper the performance of the method is quantified using 

synthetic multi-channel ERP signals to which known amounts of synthetic noise is added to all the channels.  The use of synthetic data 

means and signal and noise are known and so signal-to-noise improvement can be determined.  For a wide range of initial SNRs, PCA 

filtering increases SNR by 10 dB while Kalman filtering yields another 10 dB improvement. 
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1. Introduction 
Auditory event-related potentials (ERPs) are contaminated by a variety of artefacts and noises, making it difficult to 

separate ERPs from other brain signals, biological signals such as muscle (EMG) and eye movements, artefacts due to 

electrode and equipment movement, and interference from other systems. In measurements from ambulatory or mobile EEG 

systems (MEEG), the artefacts are often even larger and more frequent than for a static system.  However, there is increasing 

interest in the measurement of ERPs while individuals engage in the physical activities associated with normal living [1]. 

Typically, individual ERP measurements are too noisy to allow ERPs to be observed. ERP signals may have peaks of 

several micro-Volts (μV), while noise artefacts can have peaks of tens or hundreds of μV.  Often, ERPs from many repeated 

measurements, on single or multiple individuals, are averaged before clinically important features can be observed.  

Important features include the positive and negative voltage peaks, often labelled N100, P200, P300 etc. [2]. A 20-electrode 

EEG system provides 19 channels of differential ERP measurement from different standard locations on the scalp [2], [3].  

Each electrode measures the same brain reaction, but filtered due to the electrode position and the intervening tissue, plus 

noise.  This document introduces a method that allows averaging across channels.  Although each channel sees a different 

view of the ERP response, apriori knowledge of the signal correlations allows the channels to be combined to yield the best 

estimate of the underlying ERP.  

Principal Component Analysis (PCA) has been applied to ERP signals before.  PCA was used for reducing ocular 

artefacts in ERP signal by subtracting the principal component related to eye artefacts such as eye blinks, horizontal eye 

movements and vertical eye movements from raw EEG data [4], [5].  The Electrooculogram (EOG) signal is a large noise 

artefact in measured EEG data and for frontal electrodes has an amplitude much larger than brain signals.  Reducing the 

EOG component of the measured EEG signal is vital when observing ERPs. The Casarotto et al. [5] PCA method yielded 

efficient and effective reduction of EOG artefacts. Similarly, Kobayashi and Kuriki [6] employed PCA to increase the signal-

to-noise ratio (SNR) in evoked neuromagnetic signals applied to subjects. Using simulated evoked fields they demonstrated 

SNR improvement compared to the common averaging method. 

Kalman filtering was developed by Kalman in 1960 for parameter estimation and has been widely applied to parameter 

tracking applications in many fields.  It yields the maximum likelihood estimator given a priori and posteriori estimates of 
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parameter vectors, [7].  Kalman Filters (KF) have been applied to EEG time series. Kalman Smoothing has been applied to 

EEG signals to identify spikes associated with psychological diseases, [8]. Oikonomou [9] found that there is a significant 

enhancement in EEG SNR when using time-varying coefficients for an autoregressive model signal, estimated using Kalman 

filtering.  

The paper begins by introducing a method to produce synthetic multi-channel ERP signals.  These synthetic signals are 

used to quantify the performance of the proposed ERP estimation method.   Section 3 describes the calculation of PCA bases 

for each channel ERP signal and the calculation of the covariance of channel PCA basis weights.  The projection of ERP 

signals onto PCA bases, and the filtering it provides, is described in Section 4.  Section 5 introduces Kalman filtering to 

provide the optimal combination of PCA filtered channel ERPs and the apriori expected multi-channel ERP.  Finally, 

Sections 6 test the algorithms with synthetic signals and noises and this is followed by a conclusions section.   

 

2. Multi-Channel ERP Simulation   
When the brain responds to a stimulus, electrical signals move around the part of the brain involved in processing that 

stimulus.  This could be modelled as a movement of charge or the movement, rotation and evolution in strength, of one or 

more electric dipoles.  Electrodes attached to the scalp measure the electric potential on the surface due to this brain activity.  

The multi-channel simulator assumes that all channels measure the same underlying brain process, but filtered by the bone 

and tissue between the activity and the electrode on the scalp.  Therefore, many features of the ERP response will be 

consistent across channels.  For example, the P300 response is assumed to be measured at the same time on all channels.  

Similarly, the response amplitude is assumed to vary proportionately across all channels.  It is the resulting correlation across 

channels that will be exploited in the proposed algorithm introduced below. 

The ERP signal on each channel is approximated by a sum of Gaussian pulses: 

 

                                                                𝐸𝑖(𝑡) = ∑ 𝐴𝑖𝑗𝑓(𝑡; 𝑡𝑗, 𝜎𝑗)
𝑁𝐺
𝑗=1    

 

(1a) 

 

 
where 𝑓(𝑡; 𝑡𝑗, 𝜎𝑗) = 𝑒𝑥𝑝 (−

1

2𝜎𝑗
2 (𝑡 − 𝑡𝑗)

2
) (1b) 

                  

𝐸𝑖 is the pure ERP signal measured on the ith channel, for a particular trial.  For this project, three pulses were used i.e. 𝑁𝐺 =
3; corresponding to the N100, P200 and P300 responses.  The three parameters for each pulse : 𝐴𝑖𝑗, 𝑡𝑗, and 𝜎𝑗; specify the 

amplitude, centre time and width of each of the Gaussian pulses respectively.  For each trial, these parameters are determined 

from six independent samples from a Standard Normal distribution: 𝑧𝑘 ← 𝑁(0,1), 𝑘 = 1, ⋯ ,6. 
 

 𝐴𝑖𝑗 ← �̅�𝑖𝑗 × (1 + 0.1𝑧𝑗) , j=1,2,3 

 

(2a) 

 

 𝑡𝑗 ← 𝑡�̅� + 10𝑧𝑗+3 , j=1,2,3 (2b) 

                   

The 2D array �̅�𝑖𝑗 is preset with amplitudes that reflect the spatial-channel dependence of the responses.  Each of 

the N100, P200 and P300 response amplitudes are assumed to vary independently, from trial to trial and from each other.  

However, for any trial, the amplitudes are consistent across channels.  Similarly, the response peak times are assumed 

to vary independently but are the same for all channels.  The mean peak times are: 𝑡�̅� = {100,200,350} 𝑚𝑠 and the peak 

widths are 𝜎𝑗 = {50,30,75} 𝑚𝑠.  These parameters have been chosen to match the ERP responses in [2].  For 3 Gaussians 

and 19 differential measurements, the mean peak amplitude array used is: 

 

�̅�𝑖𝑗 = [
18 17 53
18 17 53
30 40 53

  
85 110 90
85 110 90
85 160 130

  
55 85 170
55 85 170
55 85 190

  
190 180 60
210 180 60
220 180 60

  
54 160 100
54 160 120
54 160 200

  
95 52 12
95 52 12

155 52 20
  
11
11
18

] × 10−2 𝜇𝑉 

           

Figure 1 illustrates a typical synthetic multi-channel ERP response.  
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Fig. 1: Synthetic ERP Signal for 19 channels. 

 

3. Principle Component Basis for Individual Channels 
An ERP measurement on a single channel yields a discrete Voltage time series 𝐄 ∈ R𝑁𝑠  , of  𝑁𝑠  samples.  If a set of   

𝑁𝑡  ERP measurements is available, then an uncentred covariance matrix 𝐂 ∈ R𝑁𝑠×𝑁𝑠 may be estimated.  This matrix provides 

information on the joint probabilities of sample values.  The Eigen vectors of the covariance matrix provide the principal 

component (PCA)  basis signals.  The Eigen values indicate how much of the variation between signals comes from 

components along PCA basis directions.  Typically, the first few PCA basis signals span a large majority of the variation in 

ERP responses.  Later basis signals span the noise.  Projecting the ERP signal on the subspace spanned by the first few PCA 

basis signals will keep many of the features of the ERP signal while greatly reducing the noise.  Let 𝐁 ∈ R𝑁𝑠×𝑁𝑏be a matrix 

whose 𝑁𝑏 columns are the first 𝑁𝑏 PCA basis vectors of length  𝑁𝑠  samples.  The first PCA basis vector is the mean ERP 

signal:  �̅�.  Projecting the measurement vector onto the subspace spanned by the PCA basis vectors to get a vector of PCA 

basis weights 𝐀 ∈ R𝑁𝑏  can be written in matrix notation as: 

 

 𝐀 = 𝐁𝐭𝐄 (3) 
 

and the projected signal is: 

 

 𝐄𝑝𝑐𝑎 = 𝐁𝐀 = 𝐁𝐁𝐭𝐄. (4) 

 

When the PCA weights are to be filtered, then a diagonal filter matrix 𝐅 ∈ R𝑁𝑏×𝑁𝑏 may be introduced: 𝐅 ≡ 𝑑𝑖𝑎𝑔(𝑓𝑖).  The 

filter weights can be chosen to yield a smooth truncation to avoid Gibbs ringing e.g. 𝑓𝑖 = 𝑒𝑥𝑝 (− (𝑖 − 𝑇𝑝𝑐𝑎)
2

2⁄ ) where 𝑇𝑝𝑐𝑎 

is the truncation basis number.  The PCA filtered ERP signal may be written: 

 

 𝐄𝐩𝐜𝐚
𝐟 = 𝐁𝐅𝐀 = 𝐁𝐅𝐁𝐭𝐄. (5) 

 

If 𝐄 ∈ R𝑁𝑠×𝑁𝑡 is a matrix whose 𝑁𝑡 columns are ERP measures from 𝑁𝑡 trials, then (5) yields 𝐄𝐩𝐜𝐚
𝐟 ∈ R𝑁𝑠×𝑁𝑡 a matrix of the 

results after PCA filtering of each trial ERP measurement.  A weighted sum of ERP measurements may be calculated by 

introducing a weight vector 𝐖 ∈ R𝑁𝑡 where:  𝐖 ≡ (𝑤𝑖).  The weighted mean ERP measurement may be written: �̅� = 𝐄𝐖, 

and the PCA filtered mean measurement is: 

 

 �̅�𝐩𝐜𝐚
𝐟 = 𝐁𝐅�̅� = 𝐁𝐅𝐁𝐭𝐄𝐖. (6) 
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Due to the associative property of matrix multiplication, 𝐁𝐅𝐁𝐭(𝐄𝐖) = (𝐁𝐅𝐁𝐭𝐄)𝐖, and so the weighted mean of the PCA 

filtered ERP responses is the same as the PCA filtered weighted mean ERP response. 

 

 
Fig. 2: Principle component Basis for channels. 

 

3.1. Multi-Channel Information 
        Using the multi-channel ERP simulator introduced in Section 2, PCA bases can be calculated for each channel using 

the methods described in Section 3.1.  As the underlying ERP signals have so much in common, the PCA bases and PCA 

projection weights 𝐀 will also have similarities.  For a given trial j, the PCA projection weights for each channel i  can be 

collected into a vector:  ijj AX  , where 𝐀𝑖𝑗. are the PCA weights for channel i in trial j.   The vector 𝐗𝑗 ∈ R𝑁𝑐𝑁𝑏×1 where 

𝑁𝑐 is the number of channels.  The collection of X vectors for the 𝑁𝑡 trials allows a mean and covariance matrix to be 

estimated: 

 

 �̅� = mean({𝐗𝑗}, 𝑗 = 1, ⋯ 𝑁𝑡) 

 

(7) 

 

 𝐂𝐗 = cov({𝐗𝑗}, 𝑗 = 1, ⋯ 𝑁𝑡) (8) 

 
The covariance matrix encapsulates all knowledge of the correlation between ERP components on all channels.  The mean 

state vector is our a priori best estimate of the multi-channel ERP PCA basis weight vector. 

 

4. ERP Estimation 
This section follows the conventional notation of Kalman Filtering, applied to an individual PCA filtered ERP 

measurement i.e. an individual subject and trial.  All the channels, as described by the vector X, are estimated at the same 

time using an algorithm we call KFPCA.  The estimation forms an optimal weighted sum of two sources of information: the 

a priori X and the measured X. 

A priori, an ERP state vector is a sample from the multi-dimensional Normal distribution with mean X and covariance 

XC .  In the absence of any further information, the maximum likelihood estimate of the ERP signal is that given by the 

mean vector X .  In terms of Kalman Filters the X and XC  correspond to 1/ kkX and 1/ kkP . 

Given an ERP measurement on all channels, for a given subject and trial, a measured vector �̂�𝑗 can be calculated using 

the processes in (3) and Section 3.1.  The measurement has an uncertainty covariance matrix 𝐑𝑗 that is estimated from the 

difference between the truncated PCA estimate and the measurements, see Section 4.1.   Given the a priori knowledge of 
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ERP and the information provided by the measurement process, an estimate of the particular ERP for this subject and trial 

𝐗𝑗, can be calculated by solving (9) for K and then using (10):   

 

 𝐊(𝐂𝐗 − 𝐑𝑗) = 𝐂𝐗, 

 

(9) 

 

 𝐗𝐣 = �̂�𝐣 + 𝐊(𝐗𝑗 − �̅�) = 𝐂𝐗 (10) 

   

4.1. Estimation of Measurement Uncertainty  
In order to implement Kalman Filtering it is necessary to develop an estimate of the PCA filtered measurement 

uncertainty in a single ERP measurement.  If 𝐀𝐩𝐜𝐚
𝐟 = 𝐅𝐁𝐭𝐄 are the filtered PCA measurement weights, then we need to 

estimate the measurement uncertainty matrix 𝐂𝐀 ∈ R𝑁𝑏×𝑁𝑏 such that the probability density function for the actual ERP PCA 

weight vector, given the measurement, is multi-variate Normal with mean 𝐀𝐩𝐜𝐚
𝐟  and covariance 𝐂𝐀

𝐟 .  It will be assumed that 

the noise in the ERP measurement is uniformly distributed across the unfiltered PCA basis weights, assuming a full PCA 

basis of rank 𝑁𝑠  .  Let 𝑛𝑖
2  be the noise power or variance in the ith PCA weight.  Then, by Parseval's Theorem: 

 

                                                     𝑁2 = ∑ 𝑛𝑖
2𝑁𝑠

𝑖=1     (11) 

                 

where 𝑁2 is the noise power in the measured ERP signal.  This can be estimated by assuming the noise is close to the 

difference between the measured ERP signal and the PCA filtered signal: 

 

 𝑁2 ≈ ‖𝐄𝐩𝐜𝐚
𝐟 − 𝐄‖

2
. (12) 

 

Given (11) and the assumption of uniform distribution of noise, then for all i:  

 

 
𝑛𝑖

2 =
𝑁2

𝑁𝑠
≈

‖𝐄𝐩𝐜𝐚
𝐟 −𝐄‖

2

𝑁𝑠
. (13) 

 

The covariance in the unfiltered PCA weights is then: 

 

 𝐂𝐀 = 𝑛𝑖
2𝐈𝑁𝑏. (14) 

 

where 𝐈𝑁𝑏 is the identity matrix of rank 𝑁𝑏 , and the covariance of the PCA filtered ERP is:  

 

 𝐂𝐀
𝐟 = 𝑛𝑖

2𝑑𝑖𝑎𝑔(𝑤𝑖
2). (15) 

 

The multi-channel uncertainty matrix 𝐑𝒋 that is the block diagonal matrix formed from the individual channel uncertainty 

matrices i.e. 𝐑𝒋 = diag (𝐂𝐀𝟏

𝐟 , 𝐂𝐀𝟐⋯
𝐟 𝐂𝐀𝐍𝐜

𝐟 ) 

 

5. SNR Performance 
A simulated 20 channel MEEG system, with a 1 kHz sample rate, has been used to test the performance of the PCA and 

KFPCA filters.  The channel PCA bases, mean PCA weights vector �̅� and weights covariance matrix 𝐂𝐗 were calculated 

using 100 simulated multichannel ERP signals.  Each channel signal is samples from 200 ms before the stimulus to 800 ms 

after.  In Monte Carlo tests, synthetic noise was added to the synthetic signals to simulate 100 ERP measurement trials for a 

range of noise scenarios.  The ERP signal and synthetic noise was different for every trial.  Three noise scenarios have been 

tested: additive white Gaussian noise (AWGN), additive pink Gaussian noise (APGN), and AWGN noise varying with 

channel.  All noise was band limited to a maximum frequency of 15 Hz before SNR calculations.  Signal and noise powers 

were defined to be the mean square amplitude of the 1000 sample signal sequences.   
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 Figure 3 illustrates a single channel with band limited AWGN with an initial SNR=0 dB.  The black curve is the 

synthetic ERP signal produced by the multi-channel simulator, and for these tests can be taken as the true, noise-free 

ERP signal.  The red curve is the measured signal including synthetic noise.  PCA filtering reduces the noise in the 

signal by removing PCA components that are largely noise.  In this example the PCA components are smoothly truncated 

around the 10th basis signal using Gaussian weights.  This signal is further combined with the expected signal using a 

Kalman Factor to yield the green curve.  Although only one channel is illustrated, the algorithm mixes information from 

all channels. All channels had the same initial SNR although, as the channel ERP signals have different amplitudes, the 

noise amplitudes will also change between channels.   Figure 4 shows the SNR improvement with filtering, starting from 

a range of initial SNRs.  PCA filtering (solid lines) yield about a 10 dB SNR improvement just by rejecting components 

that are predominantly noise.  KFPCA (dashed lines) yields a further improvement of about 7 dB for relatively clean 

signals and the improvement grows linearly for noisy signals where the measured signal is largely disregarded and the 

a priori expected signal is returned as the most likely response.  Note that some of the noise reduction comes from the 

projection method forcing the ERP signal to be zero before the stimulus and after the expected ERP response.  A shorter 

time span, say from -100 ms to 500 ms, would yield a smaller SNR improvement. 

 

 
Fig. 3: Measured, filtered and true channel 10 ERP signal for band limited AWGN, SNR=0 dB. 

 

 
Fig. 4: Change in SNR Due to PCA and Kalman Filtering for AWGN, for all channels. 

Figure 5 illustrates the results for the same experiment but using pink noise across all channels.  Pink noise is much 

more challenging as it has more power at the lower frequencies which overlap more with the expected ERP signal.  However, 

both PCA projection and Kalman filtering offer similar SNR improvements as with AWGN. 
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Fig. 5: Change in SNR Due to PCA and Kalman Filtering for APGN. 

 

 
Fig. 6: Change in SNR Due To PCA and Kalman Filtering where channels 1, 2 and 3 have an initial SNR=0 while the other channels 

have an SNR=10. 

 

Finally we consider the case where the initial SNR is not the same across all channels.  This is typically the situation 

where noise is due to electrode connection problems, electrode movement or for biological signals such as eye blink artefacts.  

Eye blinks in particular effect the channels at the front of the head much more strongly than those further back.  KFPCA 

filtering has the large advantage of utilizing expected correlations between all channel signals.  Noisy channels are identified 

as part of the algorithm and the filtered signals on these channels are guided by the signals measured on the less noisy 

channels.  This is illustrated in an example where channels 1, 2 and 3 (Fp1, Fp2 and F7) have initial SNR=0 dB while the 

other channels have SNR=10 dB.  For this test, AWGN was used.  PCA filtering yields the same SNR improvement on all 

channels as the same noise amplitude exists in all the PCA bases.  However, Kalman Filtering uses the cross-channel 

information and yields much higher SNR improvement in the three noisy channels.  In effect the algorithm reconstructs the 

signals on these channels from the more reliable information measured on the relatively clean channels.  
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6. Discussion and Conclusion 
This paper presents a synthetic multichannel ERP simulator.  The simulator has been used to demonstrate the SNR 

improvements produced by two denoising filter processes.  Initially, PCA bases are calculated for each channel. In practice 

this would be done using a set of clean ERP signals derived from averages over many trials from many individuals.  We have 

used synthetic ERP signals as these allow SNR improvements to be calculated.  PCA filtering reduces artefact noise by 

projecting measured ERP signals onto low dimensional subspaces spanned by the first 10 principal component signals in 

each channel.  A smooth truncation was used to reduce Gibbs ringing.  In these tests, PCA projection increased SNR by 

about 10 dB for both white and pink Gaussian noise.  In a second stage, the PCA projection weights were optimally combined 

with a priori weights using knowledge of the weights covariance and a Kalman factor.  In effect, this uses information from 

all channels to reduce noise in each channel.  The method was demonstrated in a scenario where three channels initially had 

10 dB more noise than the others, to simulate eye blink artefacts.  After KFPCA filtering, all channels had near the same 

SNR.  This method provides a new way to interpolate missing channels that is much more sophisticated than methods based 

on weighted sums of adjacent channels.  We propose to use KFPCA filtering on real data as a preprocessor, before combining 

trial outputs in a statistically optimised way to estimate ERP signals in the minimum number of trials. 
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