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Abstract - Optical Coherence Tomography (OCT) can provide non-invasive imaging of living tissues based on the principle of optical 

interferometry. Though there is an abundant amount of literature on OCT image processing and segmentation, recovering optical 

parameters of the biological tissue from OCT data remains a challenge and demands further research, as tissue optical properties play an 

important role in disease diagnosis. In this paper we consider estimating tissue optical properties from OCT data as an inverse problem. 

We will review the main approaches for the forward step of the inverse problem to generate the OCT signal using both the extended 

Huygens-Fresnel principle (EHF), which is a theoretical model for OCT imaging based on optics, and the Radiative Transfer Equation 

(RTE), which describes mathematically the energy transfer through a media. Our experimental results show a clear agreement between 

these two models for OCT modelling. 
 

Keywords: Optical Coherence Tomography, Inverse Problem, Extended Huygens-Fresnel Principle, Radiative Transfer 

Function. 

 

 

1. Introduction 
Optical Coherence Tomography (OCT) is a non-invasive imaging technique that can capture optical properties of 

biological tissues such as scattering and absorption properties. Changes in tissue micro-structure due to disease would alter 

these optical properties, estimating tissue optical properties is thus important for a wide range of applications including 

medical diagnosis, tissue engineering, and developmental biology. These optical properties are however invisible in OCT 

images so conventional image analysis algorithms are not suitable to detect them. Machine learning could be used to map 

tissue optical properties to the OCT signal so that tissue optical properties can be estimated from OCT data. However, 

machine learning methods to learn the mapping often require a considerable amount of training data that is representative of 

the mapping to be learnt, and this is often not available. 

In this paper we consider OCT image analysis as an inverse problem. An inverse problem generally involves two steps, 

that is, in the context of OCT, a forward step, which synthesises the OCT signal given tissue parameters, and an inverse step, 

which minimises the difference between the real OCT signal and the synthesised one. We will first review the main 

approaches for forward modelling of the OCT signal (Section 2). We will then provide details in (Section 3) for implementing 

the Extended Huygens-Fresnel principle (EHF) and the Radiative Transfer Equation (RTE) models for OCT modelling. The 

RTE model has been used for modelling optical tomography which is however different from OCT in principle, since it does 

not involve low-coherence interferometry. We present in Section 4 our experimental results for comparison of the RTE and 

the EHF models for OCT modelling, followed by the conclusion in Section 5. 

 

2. The OCT Modelling Literature in Brief 
The principle behind OCT is low-coherence interferometry [5]. To show how OCT could be used to analyse tissue 

optical properties we show a diagram of a generic OCT system in Fig. 1. Put simply, a light beam from a light source is split 

into a reference arm and a sample arm. The light exiting the sample arm is guided through a fibre and focused onto the 

sample tissue to be examined. The light through the reference arm is reflected back from a mirror, thus experiencing a time 

delay. The backscattered light from the tissue is redirected back to the system through the same fibre and combined with the 

returning light from the reference arm. The mixed light creates an interference pattern on the surface of a photoreceiver or 

detector, which is then converted into electronic signals. The signals are processed into a reflectivity profile of the sample 
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tissue at various scan depths and this is called the A-scan. As the sample arm sweeps laterally across the tissue sample, many 

A-scans are generated along the lateral direction and are combined into a cross-sectional 2D image, namely, the B-scan. B-

scans resulted from different lateral directions are combined into a 3D volume dataset. 

 

 
Fig. 1: A diagram of a generic OCT system. SD: superluminescent diode. 

 

There are in general two major approaches for modelling the OCT imaging process. The first approach uses Monte Carlo 

(MC) simulation based on an understanding of how light is propagated in scattering media such as biological tissues. The 

second approach is the analytical approach that uses equations derived from the theory of optics or energy transfer, such as 

the Maxwell's equation, and the Extended Huygens-Fresnel principle (EHF) [1]. 

MC based OCT modelling [3] simulates photon and tissue interaction during light transport within the scattering media. 

Given the geometry and optical coefficients of a medium and characteristics of a light beam, a large quantity of simulated 

photons are tracked while propagating through a medium which are subject to stochastic processes of absorption, reflection 

and scattering along their paths. Main advantages of MC based models include its applicability to tissues with complex 

geometry or optical properties and its flexibility for incorporating different optical phenomena by simulating specific photon-

tissue interaction. However, a major drawback of the approach is that the computation for solving the inverse problem can 

be very costly, since a large number of photons have to be traced at each update of the parameters to be estimated. Examples 

of MC based models include the MCML simulator [9] for studying the propagation of a laser beam incident into multi-

layered tissues. The tissue is assumed homogeneous and isotropic. The TIM-OS simulator [6] was based on MCML and 

allows for simulation of photon interaction in inhomogeneous media with varying refractive index. The media is modelled 

with a tetrahedron-based finite element mesh. Photons may be reflected or refracted while going through a face of the 

tetrahedron subject to a probability, as neighbouring tetrahedrons may have different refractive index. The MC based 

simulator described in [4] incorporates the coherence length of the light and different types of photons in the formation of 

OCT signals. 

Examples of analytical models based on the Maxwell's equation and EHF can be found in [7] for wave propagation 

through a non-absorbing media featuring spatial varying refractive index and multiple scattering events. The model is used 

to estimate the scattering coefficient 𝜇𝑠 and the effective anisotropy factor 𝑔𝑒𝑓𝑓 of both single-layered and multi-layered 

media. It does not consider the absorption coefficient 𝜇𝑎  since its magnitude is generally negligible compared to 𝜇𝑠  for 

tissues concerned. A simplified Maxwell's equation is as follows: 

 

∆2𝑈(�⃗� ) + 𝑘2𝑛2(�⃗� )𝑈(�⃗� ) = 0 (1) 

 

where 𝑈(�⃗� ) is the scalar component of the electric field of the propagating wave which is transverse to the propagating 

direction at a position �⃗� , and k is the wavenumber and 𝑛(�⃗� ) is the refractive index at �⃗�  which contains random fluctuation 

around a mean index.  
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Eq. (1) is a stochastic equation and the EHF is used to obtain an approximate solution as follows. Let 𝑝  be a 2D position at 

the detector. Let 𝑈𝑅(𝑝 ) be the reference field at 𝑝  and 𝑈𝑆(𝑝 ; 𝑧) be the sample field at 𝑝  reflected from the tissue at a probed 

depth z. By mixing both fields at the detector, the mean square heterodyne signal current 〈𝑖2(𝑧)〉 generated for the probed 

depth z is given as: 

〈𝑖2(𝑧)〉 = 2𝛼2Re(∬𝛤𝑆(𝑝 1, 𝑝 2; 𝑧)𝛤𝑅(𝑝 1, 𝑝 2)𝑑𝑝 1𝑑𝑝 2) (2) 

 

where Re means taking the real part of a complex number, Γ𝑅(𝑝 1, 𝑝 2) = 𝑈𝑅(𝑝 1)𝑈𝑅
∗(𝑝 2), the mutual coherence function of 

the reference field, and Γ𝑆(𝑝 1, 𝑝 2; 𝑧) = 〈𝑈𝑆(𝑝 1; 𝑧)𝑈𝑆
∗(𝑝 2; 𝑧)〉, the averaged mutual coherence function of the sample field 

over the statistical properties of the tissue. $\alpha$ is the power to current conversion factor. 

In contrast, the ISOCT model [10] was a single scattering model, which assumes that the medium has continuous 

refractive index (RI) fluctuations. However, single scattering models are generally not suitable for biological tissues as when 

photons propagate to a certain depth through tissues with varying refraction index (i.e., inhomogeneous), a considerable 

number of them are highly likely to be scattered multiple times. Without considering multiple scattering, errors can occur in 

optical parameter estimation. 

Finally, the OCT model described in [8] was based on the Radiative Transfer Equation (RTE) under the small angle 

approximation. The RTE describes mathematically the phenomenon of energy transfer in the form of electromagnetic 

radiation through a medium affected by emission, absorption, and scattering processes. The RTE has been used for modelling 

optical tomography which is however different from OCT in principle, since it does not involve low-coherence 

interferometry. In this paper we will provide details of our experiments using both EHF and RTE for OCT forward modelling 

and validate RTE as a suitable technique for OCT modelling. 

 

3. Forward OCT Modelling 
3.1. Using EHF 
3.1.1. Single-Layered Tissue Model 

Let 𝜇𝑠 and g be the scattering coefficient and anisotropy factor of the simulated tissue, which is assumed to have a 

refractive index n. The settings of the OCT system are as follows: the sample arm light beam with a radius 𝑤0 is focused 

onto the surface of the tissue by a focusing lens with a focus length f, so that the distance from the lens to the tissue surface, 

d, is equal to f. Let k be the wavenumber of the probing light beam: 𝑘 = 2𝜋 𝜆⁄ , where λ is the wavelength. The mean square 

heterodyne signal current 〈𝑖2(𝑧)〉 is formulated as 

 

〈𝑖2(𝑧)〉 = 〈𝑖2(𝑧)〉0𝛹(𝑧) (3) 

 

where 〈𝑖2(𝑧)〉0 is the mean square heterodyne signal current in the absence of scattering at depth z, 𝛹(𝑧) is the heterodyne 

efficiency factor representing signal degradation due to scattering. 〈𝑖2(𝑧)〉0 is calculated as 

 

〈𝑖2(𝑧)〉0 =
𝛼2𝑃𝑅𝑃𝑆𝜎𝑏

𝜋𝑤𝐻
2(𝑧)

 (4) 

 

where α is the power to current conversion factor, 𝑃𝑅 and 𝑃𝑆 are the power of the reference and the sample arm beams 

respectively, 𝜎𝑏 is the effective backscattering cross-section, and 𝑤𝐻
2(𝑧) is the 1 𝑒⁄  radius of the irradiance at the probing 

depth z defined as 

 

𝑤𝐻
2(𝑧) = 𝑤0

2 (𝐴 −
𝐵(𝑧)

𝑓
)

2

+ (
𝐵(𝑧)

𝑘𝑤0
)

2

 (5) 

 

where A and 𝐵(𝑧) are entries of the ABCD ray-matrix for light propagation from the lens plane to the probing depth.  

For this case where the sample arm light beam is focused on the surface of the tissue, we have 𝐴 = 1 and 𝐵 = 𝑑 + 𝑧 𝑛⁄ . Ψ 

is expressed as 
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𝛹(𝑧) = exp(−2𝜇𝑠𝑧) +
4exp(−𝜇𝑠𝑧)[1 − exp(−𝜇𝑠𝑧)]

1 + 𝑤𝑆
2(𝑧) 𝑤𝐻

2(𝑧)⁄
+ [1 − exp(−𝜇𝑠𝑧)]

2
𝑤𝐻

2(𝑧)

𝑤𝑆
2(𝑧)

 (6) 

 

Here 𝑤𝑆
2(𝑧) is the 1 𝑒⁄  irradiance radius of the light beam at depth z with presented scattering, which is formulized as 

 

𝑤𝑆
2(𝑧) = 𝑤𝐻

2(𝑧) + (
2𝐵(𝑧)

𝑘𝜌0(𝑧)
)

2

 (7) 

 

where 𝜌0(𝑧) is the lateral coherence length defined as follows 

 

𝜌0(𝑧) = √
3

𝜇𝑠𝑧

𝜆

𝜋𝜃𝑟𝑚𝑠
(
𝑛𝐵(𝑧)

𝑧
) = √

3

𝜇𝑠𝑧

𝜆

𝜋𝜃𝑟𝑚𝑠
(1 +

𝑛𝑑

𝑧
)  (8) 

 

where 𝜃𝑟𝑚𝑠 is the root-mean-square scattering angle.  

Eq. (6) contains three items: the first item represents the component of the probing light undergoing single scattering, 

the third item is the component experiencing multiple scattering due to tissue inhomogeneity and the second item is the 

coherence mixing of the unscattered and multiple scattered light. The anisotropy factor fitted with this model is the effective 

anisotropy factor, 𝑔𝑒𝑓𝑓 = cos𝜃𝑟𝑚𝑠. The item 𝑛𝑑 𝑧⁄  in Eq. (8) represents the shower curtain effect, since the lateral coherence 

length increases as the distance between the lens and the tissue surface increases, which leads to degeneration of the OCT 

image resolution. It is worth noting that 𝜇𝑠 and 𝜃𝑟𝑚𝑠 in Eq. (4) are sufficient to determine the shape of the OCT signal. 

Specifically, in case of a dynamic-focusing OCT system (i.e., the focusing plane is coincidental with the tissue plane at the 

probing depth while the lens is moving longitudinally during A-scan), 〈𝑖2(𝑧)〉0 is a constant proportional to 𝜎𝑏  since 

𝑤𝐻
2(𝑧) is constant w.r.t. z. 

 

3.1.2. Multi-Layered Tissue Model 
The single layered EHF model described in [7] can be extended to multi-layered tissues. Let N be the number of layers 

in the tissue. 𝑧𝑛 is the probing depth within the n-th layer. The i-th layer (𝑖 = 1,2,⋯ ,𝑁) has a refractive index 𝑛𝑖, a scattering 

coefficient 𝜇𝑠𝑖, a root-mean-squared scattering angle 𝜃𝑟𝑚𝑠,𝑖 and a depth ∆𝑖. The heterodyne efficient factor is similar to Eq. 

(3), except the following modification to incorporate optical coefficients of multiple layers 

 

𝑧 = 𝑑 + ∑ ∆𝑖

𝑛−1

𝑖=1
+ 𝑧𝑛 

 

(9) 

𝜇(𝑧) = ∑ 𝜇𝑠𝑖∆𝑖

𝑛−1

𝑖=1
+ 𝜇𝑠𝑛(𝑧𝑛) (10) 

 

We replace 𝜇𝑠𝑧 in Eq. (6) with 𝜇(𝑧) which is the total optical path length of the probing beam within the tissue. Define 

𝑙𝑛−1 = 𝑑 + ∑ ∆𝑖
𝑛−1
𝑖=1 , the distance between the lens plane and the n-th layer. The definition of 𝑤𝐻 and 𝑤𝑆 is the same as the 

single-layer model, but the lateral coherence length needs to be revised as 

 

𝜌0(𝑧) =
𝜆√3𝐵(𝑧)

𝜋√∑ 𝜃𝑟𝑚𝑠,𝑖
2 𝜇𝑠𝑖𝑛𝑖 (𝐵𝑏

3(𝑙𝑖) − 𝐵𝑏
3(𝑙𝑖+1))

𝑛
𝑖=1

 
 (11) 

 

where = 𝑑 + ∑
∆𝑖

𝑛𝑖

𝑛−1
𝑖=1 +

𝑧𝑛

𝑛𝑛
 , 𝐵𝑏(𝑙𝑖) = ∑

∆𝑗

𝑛𝑗

𝑛
𝑗=𝑖  and 𝐵𝑏(𝑙𝑛+1) = 0. 
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3.2. Using RTE 
Our aim is to compare RTE and EHF for OCT modelling. Let 𝐿(𝑧, 𝝆, 𝒏)𝑑𝑉𝑑𝒏 be the intensity of radiation in a volume 

element dV centred at a point (𝑧, 𝝆) defined in a cylindrical coordinate system where z is along the direction of radiation and 

ρ is a transverse 2D vector, and travelling within a solid angle element dn centred around the direction n. The RTE is given 

as 

 

                                                (𝒏 ∙ 𝛁 + 𝜇𝑠(𝑧) + 𝜇𝑎(𝑧))𝐿(𝑧, 𝝆, 𝒏) =
𝜇𝑠(𝑧)

4𝜋
∫𝑥(𝑧, 𝒏 ∙ 𝒏′)𝐿(𝑧, 𝝆, 𝒏′)𝑑𝒏′  (12) 

 

where 𝑥(𝑧, 𝒏 ∙ 𝒏′) is the scattering phase function at the depth z. 𝜇𝑠(𝑧) and 𝜇𝑎(𝑧) are the scattering and absorption 

coefficients respectively, which need to be estimated. If we assume that almost all photons travel along the direction of 

radiation (i.e., the z axis), that is, the angle that the path of the photons makes with the z axis should be very close to zero, 

we will have 𝒏 ≈ (1, 𝒏⊥) and 𝒏 ∙ 𝒏′ ≈ |𝒏⊥ − 𝒏⊥
′ |. We then obtain the small angle approximation of RTE as follows 

 

                                 (
𝜕

𝜕𝑧
+ 𝒏⊥ ∙ 𝛁⊥ + 𝜇𝑠(𝑧) + 𝜇𝑎(𝑧)) 𝐿(𝑧, 𝝆, 𝒏⊥) =

𝜇𝑠(𝑧)

4𝜋
∫𝑥(𝑧, |𝒏⊥ − 𝒏⊥

′ |)𝐿(𝑧, 𝝆, 𝒏⊥
′ )𝑑𝒏⊥

′   (13) 

 

Given the boundary condition, this equation can be solved either numerically or analytically with a proper choice of the 

scattering phase function. In [8], for OCT, the scattering phase function is defined as a sum of a small-angle scattering phase 

function and a constant corresponding to isotropic scattering. 

 

𝑥(𝑧, 𝛾) = (1 − 2𝑝𝑏(𝑧))𝑥1(𝑧, 𝛾) + 2𝑝𝑏(𝑧)  (14) 

 

Here γ is the scattering angle and 𝑝𝑏 is the backscattering probability to be estimated. 𝑥1(𝑧, 𝛾) is defined as a Gaussian 

density function 
 

𝑥1(𝑧, 𝛾) =
4

〈𝛾2(𝑧)〉
exp (−

𝛾2

〈𝛾2(𝑧)〉
)  (15) 

 

where 〈𝛾2(𝑧)〉 is the variance of the scattering angle at depth z to be estimated. 

Let 𝑈𝑈𝑃𝑆(𝑧, 𝝆) be the radiance of a unidirectional point light source at a position (𝑧, 𝝆) due to radiation propagation of 

the probing light beam. It can be calculated as integration of the radiation intensity over all solid angles as follows 

 

𝑈𝑈𝑃𝑆(𝑧, 𝝆) = ∫ 𝐿(𝑧, 𝝆, 𝒏⊥)𝑑𝒏⊥
′

4𝜋

  (16) 

 

The probing beam is a distributed light source, modelled as a 2D Gaussian distribution: 

 

A(𝑧, 𝝆) =
𝑃𝑠exp(−‖𝝆‖2 𝑎2(𝑧)⁄ )

𝜋𝑎2(𝑧)
  (17) 

 

where 𝑎2(𝑧) = 𝑎0
2 + ((𝑧 − 𝑓)𝜆 2𝜋𝑛𝑎0⁄ )2, the spot size at z, 𝑎0 is the spot size at the focal plane and λ is the wavelength, n 

is the mean refractive index of the medium, and 𝑃𝑠 is the power of the probing beam.  

Since the probing beam is a distributed light source, the light source at (𝑧, 𝝆) is also distributed and its radiance can be 

calculated as 

 

𝑈(𝑧, 𝝆) = 𝐴(𝑧, 𝝆)°𝑈𝑈𝑃𝑆(𝑧, 𝝆)  (18) 

 

where ° is the convolution operator.  
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The amount of backscattered light is thus calculated as 𝑥(𝑧, 𝜋)𝜇𝑠(𝑧)𝑈(𝑧, 𝝆). The OCT signal obtained from the heterodyne 

detector is calculated as the integration of backscattered energy over the detector aperture accounting for correlations between 

the forward propagating light and the backscattered light, i.e., 

 

𝐼(𝑧) = 2𝑝𝑏(𝑧)𝜇𝑠(𝑧)𝐵 ∫ (2𝑈2(𝑧, 𝝆) − 𝑈0
2(𝑧, 𝝆)) 𝑑𝝆

∞

−∞

  (19) 

 

where 𝑈0
2(𝑧, 𝝆) is the radiance of the (unscattered) ballistic component of the light, 

 

𝑈0
2(𝑧, 𝝆) = 𝐴(𝑧, 𝝆)exp(−∫ (𝜇𝑠(𝑧′) + 𝜇𝑎(𝑧′))𝑑𝑧′

𝑧

0

)  (20) 

 

and B is a constant determined by a specific OCT system. 

 

4. Results & Comparison 
To simulate the OCT signal, we use a numerical RTE multigrid solver [2]. This method was originally proposed to 

solve general RTEs and the original scattering phase function is the Henyey-Greenstein (HG) scattering phase 

function. We replaced the GH phase function by the small angle scattering phase function defined in Eq. (14). Since 

we seek a numerical solution, the small approximation of RTE is not necessary.  After the radiance f unction is 

obtained by solving the RTE equation, Eq. (19) is evaluated numerically to construct the final OCT signals. The 

OCT setup uses wavelength 1300 nm, focal length 0.5 mm, beam waist radius 7.5 µm [8]. Besides, we set the 

absorption coefficient to zero, the refractive index to 1.38 (valid for many biological tissues) and the lens-to-tissue 

distance to 0.3 mm. 

We simulated two two-layered model tissues with parameters presented in Table 1 and 2. The dimension of both 

tissues is set to 0.2(L) × 0.2(W) × 1.0(D) mm.  We use default parameter settings for the RTE multigrid solver 
 

Table 1: Parameters of the first two-layered model tissue. 

 

Layer depth (mm) 𝜇𝑠, mm-1   𝑝𝑏 〈𝛾2〉 
1 

2 

0.2 

0.8 

5 

10 

0.07 

0.2 

0.4 

0.1 

 
Table 2: Parameters of the second two-layered model tissue. 

 

Layer depth (mm) 𝜇𝑠, mm-1   𝑝𝑏 〈𝛾2〉 
1 

2 

0.3 

0.7 

1.7 

6.1 

0.043 

0.14 

0.17 

0.12 
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(a) (b) 

  
(c) (d) 

Fig. 2: Simulation result using two-layered tissue model defined in [8]. (a) and (b) show the light radiance function as the solution to 

the RTE resulted from the propagation of a unidirectional point light source placed at the top of the model tissues. (c) and (d) are the 

simulated OCT A-scan using both the RTE and EHF models. 
 

The shape of the tissue model is defined in three dimensions. The numerical solver requires triangulation of the shape 

of the tissue model into tetrahedrons. The simulation results are presented in Fig. 2. Note that the result is expressed 

using the logarithmic decibel scale (dB). The overall shape of the simulated OCT signals appears consistent with Fig. 

5 in [8]. We also simulated the OCT signals with the EHF model under the same settings, as shown in Fig. 2(c) and 

(d) as comparison. The simulation results using both models are largely consistent. As the EHF principle is known to 

model OCT signals well, the comparison result validates the RTE model for OCT modelling. The magnitude of the 

simulated signal is determined by B in Eq. (19) and the power of the probing beam, 𝑃𝑠 in Eq. (18). However, the 

magnitude is irrelevant, since the geometric and optical parameters are sufficient to determine the shape of the OCT 

signal. For the inverse problem, the simulated OCT signal should be fitted to the real signal up to a constant multiplier 

and, equivalently, up to a transverse shift in the logarithmic decibel scale. We also simulated a B-scan of a model tissue 

with two layers. The second layer has a curved shape. The B-scan image is shown in Fig. 3. 
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Fig. 3: A simulated B-scan image of a two-layered model tissue. Resolution 201×211 pixels of length 5µm. 

 

5. Conclusion 
In this paper, we reviewed state of the art techniques for modelling the OCT signal. We have implemented both 

EHF and RTE models for the modelling and demonstrated their similar results. Our next step will be to tackle the 

inverse step of the inverse problem to estimate tissue optical parameters from the OCT signal. Solving the inverse 

problem typically employs an optimisation process, which can lead to ill-posed inverse problems for complex tissue 

structures, that is, there may be no unique solutions to the inverse problem. We will however benefit from the advances 

in solutions to inverse problems in the mathematical and geophysical research communities for our OCT inverse 

problem to estimate tissue optical properties for applications. 
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