Proceedings of the 4th World Congress on Electrical Engineering and Computer Systems and Sciences (EECSS'18) Madrid, Spain – August 21 – 23, 2018 Paper No. ICBES 135 DOI: 10.11159/icbes18.135

Segmentation of the Heart Ventricle and Atrium in Handheld Ultrasound Images

Jun-Young Park¹, Woo-Hyuk Choi¹, Sung-Yun Park²

¹Biomedical engineering Lab., Dongguk university Dongguk-ro 32 Ilsandong-gu, Goyang, Republic of Korea pipen0125@gmail.com; wowoohyuk@gmail.com ²College Korean medicine, Dongguk university Dongguk-ro 32 Ilsandong-gu, Goyang, Republic of Korea bmepark@dongguk.ac.kr

Extended Abstract

Ultrasound is widely used to diagnose a heart disease due to non-invasive method and real time [1-4]. The handheld ultrasound is rapidly increasing on small or private hospital because of mobility, compact and cheaper than premium model.[5] This purpose of this study is to develop an automate segmentation algorithm that uses a measure a volume of heart ventricle and atrium.

The commercial device that is developed our own research centre is used to take a heart ventricle and atrium image. 6 males who have any cardiovascular disorders for 2 years were enrolled on this study. The algorithms of ultrasound image were developed based on MATLAB. The commercial device (ACUSON X300, Siemens, Germany) was used to check a performance of developed algorithm. The image analysis algorithm consists of 3 steps which are a pre-processing, separate region and segmentation. The pre-processing step includes a data size reduction and image enhancement. The separate region step includes a finding contours and convex hell, composite process between binary image and convex hull image, and extract ROI section. The segmentation step includes a calculating adaptive radius and a measuring a volume on each ventricle and atrium. The value (mean \pm SD) of EDV, ESV, stroke volume and EF on one subject were 2.20 \pm 0.05, 0.78 \pm 0.1, 1.42 \pm 0.12, and 64.65 \pm 2.14%, respectively. The accuracy (mean \pm SD) of EDV, ESV, stroke volume and EF were 88.23 \pm 1.71%, 88.36 \pm 2.14%, 89.12 \pm 0.27 %, and 89.54 \pm 0.48 %. Further study, we will optimize the algorithm to increase the accuracy and expand the clinical testing field for a variety ages and gender.

References

- [1] K. M. Meiburger, U. R. Acharya, and F. Molinari, "Automated localization and segmentation techniques for B-mode ultrasound images: A review," *Comut. Biol. Med.*, vol. 91, no. 1, pp. 210-235, 2018.
- [2] C. P. Loizou, C. S. Pattichis, and M. Pantziaris, T. Tyllis, A. Nicolaides, "Snakes based segmentation of the common carotid artery intima media," *Med. Biol. Eng. Comput.*, vol. 45, no. 1, pp. 35-49, 2007.
- [3] F. Valckx, and J. Thijssen, "Characterization of echographic image texture by cooccurrence matrix parameters," *Ultrasound Med. Biol.*, vol. 23, no. 4, pp. 559-571, 1997.
- [4] F. Molinari, C. Caresio, and U. Acharya, "Advances in quantitative muscle ultrasonography using texture analysis of ultrasound images," *Ultrasound Med. Biol.*, vol. 41, no. 9, pp. 2520-253, 2015.
- [5] B. Wiley, and B. Mohanty, "Handheld Ultrasound and Diagnosis of Cardiovascular Disease at the Bedside," *J. Am. Coll. Cardiol.*, vol. 64, no. 2, pp. 229-230, 2014.