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Abstract - Recently, Co-occurrence histograms of oriented gradients (CoHOG) describes image features to calculate the co-occurrence 

of pixels allocated at the local level and has attracted attention as an effective object detection method. However, this method has some 

problems. For feature descriptions that focus on individual pixels, calculation cost and the number of dimensions tend to increase 

exponentially with respect to the number of pixels. Multiresolution CoHOG (MRCoHOG) can suppress such exponential increases to 

linear increase without reducing the classification accuracy. This paper proposes a procedure in which a feature plane is divided using a 

Gaussian mixture model and a histogram is automatically divided to establish a less costly method for performing MRCoHOG. 

Experimental results demonstrate that the proposed procedure is more effective than conventional procedures. 
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1. Introduction 
Automatic object detection methods, particularly those based on deep learning [1], have attracted attention as important 

image processing techniques. In addition, handcrafted feature descriptors are important to realize compact sensing systems, 

such as ubiquitous sensing, which can be used in pedestrian recognition applications [2]. For example, a pedestrian detection 

system that utilizes dashcams to facilitate safe driving has been proposed in a previous study [3]. Generally, object detection 

algorithms comprise two phases. In the first phase, features are calculated from static images, while in the second phase, 

these features are used to recognize particular objects. The multiresolution co-occurrence histograms of oriented gradients 

(MRCoHOG) [4] utilizes a gradient histogram in a local area in a manner similar to that of other recent methods, for example, 

the histogram of oriented gradients (HOG), a descriptor proposed by Dalal and Triggs, is particularly efficient at detecting 

people [5], and Co-occurrence histograms of oriented gradients (CoHOG) [6] and feature interaction descriptor [7] describe 

high-dimensional features by calculating the co-occurrences of HOG features. 

These co-occurrence features can express objects of complex shape by considering the relationship between the gradient 

orientations of pairs of pixels. However, calculating all co-occurrences involve vast numbers of combinations; thus, the 

following questions arise. Which pixels should be analyzed? Which computational algorithm should be utilized? Appropriate 

choices must be made because these factors influence classification accuracy. At the first of the method, CoHOG focuses on 

a pair of pixels with various offsets from various local regions in the image. The offsets comprise two pixels in a semicircle 

with a radius of four pixels (30 possible combinations). CoHOG can extract co-occurrence information over a wide region 

by expanding the radius of the semicircle; however, as the radius increases, the calculation cost and number of feature 

dimensions increase exponentially. Generally, in-vehicle and surveillance cameras used in object detection cannot perform 

these calculations in a realistic period of time. Thus, calculation costs must be reduced to achieve object detection with simple 

hardware. Therefore, we propose a feature description method based on the Gaussian mixture model MRCoHOG (GMM-

MRCoHOG) to reduce calculation costs 
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2. Related Work 
2.1. Co-occurrence Histograms of Oriented Gradients 

The CoHOG extract local-level information about the co-occurrence of gradient orientations between two pixels and 

can classify objects with similar distributions of gradient orientations; thus, it suffers fewer false detections than HOG. 

 

2.1.1. Calculating the Magnitude and Orientation of a Gradient 
A 𝑤 × ℎ [pixels] image is divided into blocks, and the magnitude and orientation of the gradient in each block is 

extracted. Let 𝑏𝑥 [pixels] and 𝑏𝑦 [pixels] be the horizontal and vertical dimensions of the block, respectively. The block 

number 𝑁_𝐵𝑙𝑜 is calculated as follows: 

 

𝑁_𝑏𝑙𝑜 =  𝑤𝑏 × ℎ𝑏 (𝑤𝑏 =
𝑏𝑦

𝑏𝑥
, ℎ𝑏 =

ℎ

𝑏𝑦
). (1) 

 

At pixel (𝑥, 𝑦), the magnitudes of horizontal gradient 𝑓𝑥(𝑥, 𝑦) and vertical gradient 𝑓𝑦(𝑥, 𝑦) are as follows: 

 

𝑓𝑥(𝑥, 𝑦) =  𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦), 
 

(2) 

 

𝑓𝑦(𝑥, 𝑦) =  𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1), (3) 

 

where 𝐿(𝑥, 𝑦) is brightness. Based on these magnitudes, the orientation of the gradient 𝜃(𝑥, 𝑦) at pixel (𝑥, 𝑦) is calculated 

as follows: 

 

𝜃(𝑥, 𝑦) = arctan
𝑓𝑦(𝑥, 𝑦)

𝑓𝑥(𝑥, 𝑦)
. (4) 

 

Then, the gradient orientation 𝜃 is quantized into 𝑁𝜃(=  8) directions, and the magnitude of the orientation 𝑓𝜃(𝑥, 𝑦) is 

calculated as follows: 

 

𝜃(𝑥, 𝑦) =  √𝑓𝑥(𝑥, 𝑦)2 + 𝑓𝑦(𝑥, 𝑦)2. (5) 

 
2.1.2. Offset 

The offset is calculated without redundancy for a pair of points, as shown in Fig. 1(a). The first point of interest is 𝑋𝑐, 

and the other point is selected from the semicircular region centered at 𝑋𝑐, as shown in Fig. 1(b). For example, there are 30 

candidate points at coordinates 4 pixels away from 𝑋𝑐. 
 

2.1.3. Vote on Co-Occurrence Matrix 
CoHOG can express complex shapes using a co-occurrence matrix. The co-occurrence matrix 𝐶 =  (𝐶𝑥,𝑦(𝑖, 𝑗)) is 

calculated as follows: 

 

(𝐶𝑥,𝑦(𝑖, 𝑗)) =  ∑∑

{
 
 

 
 
1, 𝑖𝑓 𝜃(𝑝, 𝑞) = 𝑖                      

𝑎𝑛𝑑 𝜃(𝑝 + 𝑥, 𝑞 + 𝑦) = 𝑗       

𝑎𝑛𝑑 𝑓𝜃(𝑝, 𝑞) > 𝑇𝐻                

𝑎𝑛𝑑 𝑓𝜃(𝑝 + 𝑥, 𝑞 + 𝑦) > 𝜏,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,                         

ℎ

𝑞=1

𝑤

𝑝=1

 (6) 
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where 𝑖 and 𝑗 denote the orientations of the gradients and 𝜏 is a threshold gradient magnitude. Then, the magnitude and 

orientation of the gradient of zero-offset (𝑋𝑐 and 𝑋𝑐 co-occurrence) is voted into another histogram with 𝑁𝜃(=  8) bins. 

Then, the CoHOG is generated by concatenating all co-occurrence matrices into a vector, i.e., a high-dimensional feature. 

Figure 2 shows an overview of the CoHOG calculation. The dimension 𝐷𝑖𝑚𝐶𝑜is calculated as follows: 

 

𝐷𝑖𝑚𝐶𝑜 = (𝑁𝑀𝑎𝑡 ×𝑁𝑂𝑓𝑓𝐶𝑜 + 𝑁𝜃) × 𝑁_𝐵𝑙𝑜𝐶𝑜 , (7) 

 

where 𝑁_𝑀𝑎𝑡 denotes the number of bins in the co-occurrence matrix, 𝑁_𝑂𝑓𝑓𝐶𝑜 denotes the number of nonzero offsets, 𝑁𝜃 

denotes the number of gradient orientations, and 𝑁_𝐵𝑙𝑜𝐶𝑜 denotes the number of blocks. For example, when the region of 

interest is 30 × 60 pixels and the horizontal and vertical dimensions of the blocks are 10 and 10 pixels, respectively, the 

CoHOG vector comprises {(8 × 8) × 30 + 8} × 18 = 34,704 dimensions. 

 

      
(a) (b) 

 

Fig. 1: (a) Redundant offset (right image) produces a result equivalent to another offset (left image). (b) Region of interest for 

calculating the co-occurrence matrix that describes a feature of the CoHOG [6]. 

 
2.2. Multiresolution Co-occurrence Histograms of Oriented Gradients 

Typically, to achieve efficient and accurate object detection, a large semicircle must be considered to select the best 

candidate to extract the offset. However, the computational cost of the CoHOG increases exponentially with an increase in 

the semicircle’s radius. In contrast, the computational cost of MRCoHOG increases linearly with an increase in the radius 

because the number of offsets increases linearly. In the following, we present the details of MRCoHOG with respect to 

describing features. 

 
2.2.1. Region of Offset in MRCoHOG 

MRCoHOG uses only adjacent pixels in multiresolution images as candidates to extract the offset, as shown in Fig. 2(a). 

MRCoHOG uses four adjacent pixels rather than using the offsets extracted from a semicircle centered on the original image. 

The process to obtain multiresolution images and offsets for MRCoHOG are shown in Fig. 2(b).  

 
2.2.2. Relation between the Range of the Region of Offset and Calculation Cost 

In CoHOG, the number of offsets increases exponentially as the range expands (e.g., 10, 18, and 30 offsets for ranges 

of 2, 3, and 4, respectively), and the calculation cost increases in proportion to the number of offsets. As mentioned 

previously, the number of offsets for MRCoHOG increases linearly with respect to the radius of the semicircle; thus, 

computation cost increases linearly. In addition, as the block size is invariant, low resolutions require few blocks, which 

reduces the calculation cost. 
 

2.2.3. Dimension of MRCoHOG 
The dimension DimMR  of the MRCoHOG vector is calculated as follows: 

 

DimMR = (𝑁_𝑀𝑎𝑡 × 𝑁_𝑂𝑓𝑓𝑀𝑅 + 𝑁𝜃) × 𝑁_𝐵𝑙𝑜𝑀𝑅, (8) 

 

where 𝑁_𝑀𝑎𝑡 denotes the number of bins in the co-occurrence matrix, 𝑁_𝑂𝑓𝑓𝑀𝑅 denotes the number of nonzero offsets, 𝑁𝜃 

denotes the number of gradient orientations, and 𝑁_𝐵𝑙𝑜𝑀𝑅 denotes the total number of blocks in all resolutions. For example, 

when the region of interest is 30 × 60 pixels and the horizontal and vertical dimensions of the block are 8 and 6 pixels, 
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respectively, the MRCoHOG vector comprises {(8 × 8) × 4 + 8} × (64 + 16 + 4) = 22,176 dimensions. Note that this is 

~80% of the dimensions of the CoHOG vector. 

 

3. Proposed Method 
With an MRCoHOG algorithm, features are described by histograms with uniform resolution that is determined by the 

number of bins in each block. Consequently, some bins remain unused; thus resulting in sparse feature values. This means 

that memory must be allocated for unused bins. This paper proposes GMM-MRCoHOG to determine the optimal width and 

location of the bins in each block automatically. With the proposed method, feature spaces of the MRCoHOG are 

approximated using the GMM. The optimal number of bins and their locations for feature description are generated 

automatically using the distributions of positive and negative samples. Compared with conventional MRCoHOG, describing 

features based on automatically generated bins reduces dimensionality without reducing recognition accuracy. 

 

 
 

(a) (b) 
 

Fig. 2: (a) Region of interest for calculating co-occurrence matrix used to describe a feature in MRCoHOG. (b) Resizing images in 

MRCoHOG. 
 

3.1. Gaussian Mixture Model 
When a probability density distribution is multicrestedness, approximation with normal distribution is difficult; 

therefore, multicrestedness distributions are approximated using the weighted linear sums of multiple normal distributions. 

This model is referred to as GMM and is expressed as follows: 

 

𝑝(𝑥|𝜃) =  ∑𝜋𝑗𝑁(𝑥|𝜇𝑗 , Σ𝑗),

𝐾

𝑗=1

 (9) 

𝑑𝑀
2 (𝑥; 𝜇𝑗 , Σ) = (𝑥 − 𝜇)

⊤Σ−1(𝑥 − 𝜇), and  

𝑁(𝑥|𝜇, Σ ) =  
1

(2𝜋
𝑛
2)√|Σ|

exp {−
1

2
𝑑𝑀
2 (𝑥; 𝜇, Σ)}. (10) 

 

In Eqs. (9) and (10), 𝑥  and 𝜇  are 𝑛-dimensional vectors, Σ represents an 𝑛 × 𝑛  variance-covariance matrix, and 𝜋 

represents the weight of each normal distribution. Thus, the GMM is expressed as the sum of all weighted normal 

distributions. 

 

3.1.1. Training the GMM 
Note that no specific procedure has been established to identify all parameters in a single round of calculations when 

training a GMM. We use the expectation-maximization (EM) algorithm, a maximum likelihood expectation method. An 

expectation is made for each parameter value, and the calculation is repeated until it approaches the optimal value. The latent 

variable 𝑧 ∈ 1,…𝐾 is defined and employed as follows: 

 

𝑝(𝑥|𝑧, 𝜃 ) =  𝑁(𝑥|𝜇𝑧 , Σ𝑧), 
 

(11) 
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𝑁(𝑥|𝜇, Σ ) =  
1

(2𝜋
𝑛
2)√|Σ|

exp {−
1

2
𝑑𝑀
2 (𝑥; 𝜇, Σ)}. (12) 

 

The combined Gaussian function 𝑝(𝑥|𝑧, 𝜃) is modified using Eqs. (11) and (12) as follows: 

 

𝑝(𝑥|𝜃 ) =  ∑𝑝(𝑥, 𝑧 = 𝑗|𝜃)

𝐾

𝑗=1

 

                                  = ∑𝑝(𝑥|𝑧 = 𝑗, 𝜃)𝑝(𝑧 = 𝑗|𝜃)

𝐾

𝑗=1

 

               = ∑𝜋𝑗𝑁(𝑥|𝜇𝑗 , Σj)

𝐾

𝑗=1

. 

(13) 

 

From Eq. (13), the 𝑥  distribution 𝑝(𝑥|𝜃)  can be expressed as a simultaneous distribution with 𝑧 , i.e., a marginalized 

distribution with respect to 𝑧. Accordingly, using Bayes’ theorem, this equation can be divided by the 𝑥 distribution and 

prior distribution for 𝑧. Then, using Eqs. (11) and (12) and introducing the equation with latent variable 𝑧, we find the GMM 

for Eq. (9) as follows: 

 

𝜃 =  argmax∑ log(∫ 𝑝(𝑥𝑖, 𝑧𝑖|𝜃)𝑑𝑧𝑖)
𝐾
𝑗=1  and 

 

(14) 

 

𝐵[{𝑞𝑖(𝑧𝑖)}, 𝜃] =∑∫𝑞𝑖

𝐼

𝑖=1

(𝑧𝑖) log (
𝑝(𝑥𝑖 , 𝑧𝑖|𝜃)

𝑞𝑖(𝑧𝑖)
) 𝑑𝑧𝑖 ≤∑log (∫𝑝(𝑥𝑖 , 𝑧𝑖|𝜃)𝑑𝑧𝑖) .

𝐼

𝑖=1

 (15) 

 

The logarithmic likelihood equation incorporating latent variable 𝑧 is given by Eq. (14). From Eq. (15) and considering 

Jensen’s inequality, we define the lower limit of the likelihood as 𝐵[{𝑞𝑖(𝑧𝑖)}, 𝜃], which is always lower than the maximum 

sought likelihood. The optimal parameters are estimated, and the lower limits of the maximum value and 𝜃, i.e., the parameter 

that maximizes the lower limit, are subsequently found via recursive calculations. 

 

3.2. GMM-based Procedure for Expressing Features 
The Fisher vector-based algorithm [8][9] is a GMM-based procedure for expressing features that provides more accurate 

recognition with large image distributions than procedures that use image feature values, such as SIFT [10]. However, the 

Fisher vector treats all gradients of the GMM parameters as feature quantities; therefore, it requires many calculations and 

the feature quantities have high dimensionality. Therefore, we use the proposed GMM-MRCoHOG because it provides 

feature quantities of a lower dimensionality than the Fisher vector. 

 

3.3. Training Feature Spaces 
In our proposal method, we estimate an area of the GMM, where the similarity between positive image(in this paper, 

pedestrian) and negative image(an image of the other class) occurrence probability is low. To overcome above,  at the first, 

MRCoHOG feature values in the probability distributions of a positive and of a negative are calculated to allocate basis 

functions using Eqs. (11) and (12) as follows: 

 

𝑓𝑝(𝑥𝑝) = 𝑁(𝑥𝑝| 𝜇𝑧, Σz), 
 

(16) 

 

𝑓𝑛(𝑥𝑛) = 𝑁(𝑥𝑛| 𝜇𝑧, Σz). (17) 
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Second, the obtained basis functions are used to generate samples and train new GMM parameters. This new GMM 

demonstrates a lower number of combinations than the obtained Gaussian mixture. Then, the second GMM is retrained. 

 

 
Fig. 3: Distribution of positive and negative images. 

 

 
Fig. 4: Combinations of feature spaces. 

 

Note that this process can reduce the number of parameters. Figure 3 shows distributions obtained from positive and negative 

images after the MRCoHOG feature values are calculated for those images and the feature planes of the block offsets are 

combined. Then, the EM algorithm is used to train the GMM on the obtained feature planes (Fig. 4). Note that we use the 

Jensen–Shannon (JS) divergence between positive image and negative image occurrence probability (Fig. 4). 

 

3.3.1. Jensen–Shannon Divergence 
The Kullback–Leibler (KL) divergence (Eq. (18)) measures the similarity between probabilities. As the certainty degree 

distribution 𝑝(𝑥) and 𝑞(𝑥) becomes increasingly similar, the KL divergence decreases, and when this value is equal, it 

becomes 0. However, since KL divergence does not satisfy symmetry as in Eq. (19) and does not satisfy triangular inequality, 

it does not satisfy the definition of general distance. 

 

𝑓𝑘(𝑝(𝑥); 𝑞(𝑥)) =  −∫𝑝(𝑥) log
𝑝(𝑥)

𝑞(𝑥)
𝑑𝑥 ≥ 0, 

 

(18) 

 

    𝑓𝑘(𝑝(𝑥); 𝑞(𝑥)) =  0   (𝑝(𝑥) = 𝑞(𝑥)), and 

𝑓𝑘(𝑝(𝑥); 𝑞(𝑥)) ≠ 𝑓𝑘  (𝑞(𝑥); 𝑝(𝑥)). 
(19) 
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Using the KL divergence, the JS divergence is defined to satisfy symmetry and is defined as follows: 

 

    𝑓𝑗(𝑝(𝑥); 𝑞(𝑥)) =
1

2
𝑓𝑘(𝑝(𝑥); 𝑞(𝑥)) +

1

2
𝑓𝑘(𝑞(𝑥); 𝑝(𝑥)) and 

𝑎(𝑥) =
1

2
𝑝(𝑥) +

1

2
𝑞(𝑥). 

(20) 

 

From the KL divergence, Eq. (21) is used to define the JS divergence (Eq. (22)) by interpreting the similarity between 

the probabilities of 𝑝 and 𝑞 in a certain random variable 𝑥 As follows: 

 

𝑘(𝑝(𝑥); 𝑞(𝑥)) = 𝑝(𝑥) (log
𝑝(𝑥)

𝑞(𝑥)
) , 

 

(21) 

 

𝑗(𝑝(𝑥); 𝑞(𝑥)) =
1

2
𝑘(𝑝(𝑥); 𝑎(𝑥)) +

1

2
𝑘(𝑞(𝑥); 𝑎(𝑥)), 

 

𝑎(𝑥) =
1

2
𝑝(𝑥) +

1

2
𝑞(𝑥), and 

(22) 

 

𝑔(𝑥) = 𝑗(𝑓𝑝(𝑥); 𝑓𝑛(𝑥)).   (23) 

 

We use the inverse function method in Eq. (23) to define Eqs. (24) and (25) (Fig. 5). Then, 𝐻−1(𝑥), i.e., the inverse of 

𝐻(𝑥), is used to generate random numbers obeying ℎ(𝑥) from a uniform distribution of random numbers. The, we generate 

a new sample. Next, we employ GMM again with the EM algorithm. 

 

ℎ(𝑥) =  
|𝑔(𝑥)|

∫|𝑔(𝑥)|
, 

 

(24) 

 

𝐻(𝑥) = ∫ ℎ(𝑡)𝑑𝑡
𝑥

0

. (25) 

 

Then, the feature values found while learning the feature spaces with 𝑔(𝑥) are calculated. The load ratios that can be 

calculated using Eq. (26) using the feature values represent the probability that the GMM comprising the various weighted 

normal distributions is generated correctly using data 𝑥. 

 

𝛾(𝑧𝑘) = 𝑝(𝑧 = 𝑘|𝑥) =
𝜋𝑘𝑁(𝑥|𝜇𝑘 , Σ𝑘)

∑ 𝜋𝑗𝑁(𝑥|𝜇𝑗 , Σ𝑗)
𝐾
𝑗=1

 . (26) 

 

While calculating feature values, the number of feature spaces equals the number of histograms; thus, the load ratio is 

calculated using the GMM obtained for each feature space. Then, the load ratios are listed, toconstitute feature  

 

 
Fig. 5: Training the GMM using EM algorithm on generated samples. 
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quantities. Thus, the dimension of the proposed feature quantity, i.e., the number 𝐾 of GMM combinations, is determined 

by the number of blocks and number of offsets. 

 

3.3.2. Normalization of Feature Quantities 
The procedure used for GMM feature calculations also tends to generate sparse features; therefore, to avoid overtraining, 

L2 normalization (Eq. (27)) is employed using the Fisher vector algorithm [8], followed by power normalization (Eq. (28)). 

The proposed procedure also employs feature quantities as GMM loads; thus, L2 and power normalizations are also 

performed.  

 

‖𝑥‖2 = √Σ𝑥𝑖
2, 

 

(27) 

 

𝑥𝑖 = sign(𝑥𝑖)|𝑥𝑖|
𝛼. (28) 

 
3.4. Experiment to assess GMM-MRCoHOG 

The Daimler pedestrian dataset [11] was employed to train the proposed GMM-MRCoHOG, and the INRIA person 

dataset [5] was employed for evaluation. The subsequent numbers of feature dimensions are given in Table 1. The objects 

of comparison are an MRCoHOG (cmb3) and a CoHOG using pixels up to 4 pixels distant from the element employed for 

co-occurrence (mg4). Note that an SVM [11] was used for recognition. The results are discussed below. 

Figure 6 shows that the proposed GMM-MRCoHOG provides higher accuracy than both MRCoHOG (cmb3) and 

CoHOG (mg4). 

 
Table 1: Feature dimensions for feature qualities. 

 
 

Method Dimensions 

CoHOG (mg4) 34,704 

MRCoHOG (cmb3) 22,176 

GMM-MRCoHOG (cmb3, K = 64) 21,504 

GMM-MRCoHOG (cmb3, K = 32) 10,752 

GMM-MRCoHOG (cmb3, K = 16) 5,376 

 

4. Conclusion 
This paper has proposed a procedure to describe features that employ GMM-based feature space training. The 

experimental results demonstrate that employing the GMM-MRCoHOG reduces the number of feature dimensions by ~75% 

while still providing high recognition accuracy. This suggests that the proposed method can be performed on less expensive 

hardware than conventional MRCoHOG. In future, we intend to establish an automatic procedure to determine mixture 

combinations and improve image analysis accuracy. In addition to the SVM employed in the current study, we intend to 

conduct experiments using algorithms such as AdaBoost and neural network. The obtained results will be compared to those 

of conventional methods, and the capabilities of the proposed GMM-MRCoHOG will be further examined. 
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Fig. 6: Experimental result. 
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