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Abstract - Optical flow is a velocity vector which represents the motion of objects in images. For the dynamical system based optical 

flow estimation, this paper proposes a new dynamical system model to improve the estimation accuracy. Specifically, the central 

difference discretization is applied instead of the forward difference discretization to time derivative in the optical flow equation. As the 

central difference discretization reduces the approximation error, the estimation accuracy might be improved. We validate the 

effectiveness of the proposed method by numerical experiments. 
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1. Introduction 
Optical flow is a velocity vector which represents the motion of objects in images. The estimation of optical flow enables 

us to detect and track the motion of the object in the image. As an optical flow estimation method, there is the gradient 

method which assumes that the brightness does not change after the image moves, and estimates optical flow based on the 

partial derivative equation, called the optical flow equation [1]. Since there are not enough constraints on the optical flow, 

the optical flow is not uniquely determined. In order to solve this problem, Horn and Schunck [1] and Lucas and Kanade [2] 

proposed two different estimation methods. The method in [1] assumes that the optical flow changes smoothly and minimizes 

both the error of optical flow equation and the difference of optical flow. On the other hand, the method in [2] assumes that 

the optical flows of the neighborhood are all same and gather all the optical flow equations in the neighborhood as a 

simultaneous equation, which determine the optical flow uniquely. Based on these essential works, enormous attempts have 

been made to improve the estimation accuracy and to overcome the difficulties caused by occlusion and/or large replacement, 

e.g., [3,4,5,6], etc. 

The dynamical system based optical flow estimation method, which regards the optical flow equation as a dynamical 

system and applies the Kalman filter to the dynamical system, has been proposed [7]. The dynamical system based estimation 

in [7] is for the point estimation, i.e., the optical flow at a fixed pixel. In [8], the dynamical system based estimation is applied 

to the dense estimation of optical flow. The dynamical system based estimation method has some advantages. This method 

improves the accuracy of optical flow estimation in the rotating and shrinking images. Also, by applying the Kalman filter, 

the covariance matrix of the estimation error is obtained simultaneously with the optical flow, and the estimation accuracy 

can be evaluated even if the true value of optical flow is unknown. Moreover, by using the measurement residual, the flow 

boundary can be estimated simultaneously with the optical flow. Also, a method to introduce artificial diffusion term 

parameters [9] has been proposed to perform smooth estimation like the estimation method based on the variational method 

[10]. All the models used in those estimation method are based on the discretized both in the time and space. The time 

derivative has been discretized by the forward difference discretization and the spatial derivative by the central difference 

discretization. 

In this paper, in order to improve the accuracy of optical flow estimation, we propose to apply the central difference 

discretization instead of the forward difference discretization to time derivative in the optical flow equation. As the central 

difference discretization reduces the approximation error, the estimation accuracy might be improved. We validate the 

effectiveness of the proposed method by numerical experiments. 
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2. Dynamical-System-Based Estimation Model 
In this section, the quasi-dense estimation model proposed in [8] is reviewed.  

 

2.1. The Optical Flow Equation and Dynamical System based Estimation 
The gradient method is an estimation method using the conservation law of brightness. The conservation law is based 

on the assumption that the brightness does not change after moving the image in minute time, and is expressed by 
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where I(x, y, t) is the brightness; (x, y) represents the coordinates on the image, t is time, and [𝑢  𝑣]T represents optical flow. 
The dynamical system based estimation regards the equation (1) as a dynamical system, and applies the Kalman filter to the 

dynamical system [7]. The dynamical system model in [7] can be expressed as follows: 
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. (2) 

 

The method in [7] enables us to estimate not only the optical flow [𝑢  𝑣]T, but also its spatial derivatives simultaneously. 

Furthermore, as proposed in [7], if we apply Kalman filter to estimate the optical flow, we can also obtain the covariance 

matrix of the estimation error. This implies that we can evaluate the confidence of the estimation without the knowledge of 

true optical flow values. 

In order to estimate the optical flow using a computer, it is necessary to discretize the partial derivative of  the 

equation (1) both in space and time. Therefore, the time derivative is discretized by the forward difference discretization 

and the spatial derivative is discretized by the central difference discretization. Accordingly, the discretized optical flow 

equation becomes as follows: 

 

𝐼(𝑥, 𝑦, 𝑘 + 1) − 𝐼(𝑥, 𝑦, 𝑘) = −{𝐼𝑥(𝑥, 𝑦, 𝑘)𝑢(𝑥, 𝑦, 𝑘) + 𝐼𝑦(𝑥, 𝑦, 𝑘)𝑣(𝑥, 𝑦, 𝑘)}, (3) 

 

where 𝐼𝑥, 𝐼𝑦 are the spatial derivatives of the brightness on x and y. The discrete time system model can be obtained by 

applying similar discretization to the left-hand side of (2). With the discrete time system model, we can implement the 

proposed method in [7]. 

 

2.2. Dense Estimation 
The dynamical system based estimation in [7] is for the point estimation, i.e., the optical flow (and its spatial derivatives) 

at a fixed pixel is estimated. In [8], the dynamical system based estimation is applied to the dense estimation of optical flow. 

The key idea is replacing the spatial derivative of the brightness at the pixel with the difference of the brightness of the 

neighborhood of the pixel. This replacement can be realized as follows: 
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. (4) 

 

Note that all the elements in the right-hand side of the equation consist of the state variables, i.e., the variables in the left-

hand side of the equation, at time k. Accordingly, the equation (4) can be regarded as a discrete time dynamical system. In 

order to guarantee the observability of the model (4), the quasi-dense estimation in [8] proposes to decimate the optical flow 

of some pixels and estimate the optical flow of the remaining pixels, not estimate with all pixels of the estimation area. The 

optical flows of decimated pixels are interpolated by applying the interpolation operator after estimation.  

 

3. Proposed Method 
In this section, we describe a new estimation model that improves the accuracy of the optical flow estimation. 

 

3.1. Improvement of Discretization Accuracy of Time Derivative 
In order to improve the accuracy of optical flow estimation, we propose to apply the central difference discretization 

instead of the forward difference discretization to time derivative in the equation (1). As the central difference discretization 

reduces the approximation error, the estimation accuracy might be improved. With the central difference discretization, 

equation (1) is discretized as follows: 

 
𝐼(𝑥, 𝑦, 𝑘 + 1) − 𝐼(𝑥, 𝑦, 𝑘 − 1)

2
= −{𝐼𝑥(𝑥, 𝑦, 𝑘)𝑢(𝑥, 𝑦, 𝑘) + 𝐼𝑦(𝑥, 𝑦, 𝑘)𝑣(𝑥, 𝑦, 𝑘)}. (5) 

 

Accordingly, the discrete time system model of optical flow (4) is replaced by 

 

[
 
 
 
 
 
 

⋮
𝐼(𝑥, 𝑦, 𝑘 + 1)

𝐼(𝑥, 𝑦, 𝑘)
⋮

𝑢(𝑥, 𝑦, 𝑘 + 1)

𝑣(𝑥, 𝑦, 𝑘 + 1)
⋮ ]

 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 

⋮

[𝐼(𝑥, 𝑦, 𝑘 − 1)                                    

− 2{
𝐼(𝑥 + 1, 𝑦, 𝑘) − 𝐼(𝑥 − 1, 𝑦, 𝑘)

2
𝑢(𝑥, 𝑦, 𝑘) +

𝐼(𝑥, 𝑦 + 1, 𝑘) − 𝐼(𝑥, 𝑦 − 1, 𝑘)

2
𝑣(𝑥, 𝑦, 𝑘)}]

𝐼(𝑥, 𝑦, 𝑘)
⋮

𝑢(𝑥, 𝑦, 𝑘)

𝑣(𝑥, 𝑦, 𝑘)
⋮ ]

 
 
 
 
 
 
 
 
 
 
 

. (6) 

 

Note that 𝐼(𝑥, 𝑦, 𝑘)  in the left-hand side of the equation is the one time ahead of the variable 𝐼(𝑥, 𝑦, 𝑘 − 1)  and the 

implementation of the central difference discretization of time derivative requires the additional brightness 𝐼(𝑥, 𝑦, 𝑘 − 1) as 

a partial state of the dynamical system model. The explicit representation of the discrete time system is given as follows. Let 

us assume that the estimation area is a rectangular area whose width and height are M and N, and that L is the number of 

pixels in which optical flow is actually estimated. The vector of brightness at time k is defined as follows: 

 

𝑞𝐼(𝑘) = [𝐼(1,1,𝑘)  𝐼(1,2,𝑘)  ⋯  𝐼(𝑀,𝑁,𝑘)]
T. (7) 

 

Also, the vectors of the optical flows are defined as follows: 

 

𝑞𝑢(𝑘) = [𝑢(1,1,𝑘)  𝑢(1,2,𝑘)  ⋯  𝑢(𝑀,𝑁,𝑘)]
T, (8) 
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𝑞𝑣(𝑘) = [𝑣(1,1,𝑘)  𝑣(1,2,𝑘)  ⋯  𝑣(𝑀,𝑁,𝑘)]
T. (9) 

 

Using these vectors, the state vector 𝑞(𝑘) of the proposed model is defined as follows: 

 

𝑞(𝑘) = [𝑞𝐼(𝑘)
T   𝑞𝐼(𝑘−1)

T   𝑞𝑢(𝑘)
T   𝑞𝑣(𝑘)

T ]T. (10) 

 

Using these equations, the following non-linear dynamical system is considered as follows: 

 

𝑞(𝑘+1) = 𝑓(𝑞(𝑘)), 
 

(11) 

 

𝑧(𝑘) = 𝐻𝑞(𝑘), (12) 

 

where 𝑓(𝑞(𝑘)) is the non-linear function, and 𝑧(𝑘), H are given by 

 

𝑧(𝑘) = [𝐼(1,1,𝑘)  𝐼(1,2,𝑘)  ⋯  𝐼(𝑀,𝑁,𝑘)]
T = 𝑞𝐼(𝑘), 

 

(13) 

 

𝐻 = [𝐸𝑀𝑁×𝑀𝑁  𝑂𝑀𝑁×(𝑀𝑁+2𝐿)]. (14) 

 

The matrices 𝐸𝑚×𝑛, 𝑂𝑚×𝑛 are the 𝑚 × 𝑛 identity matrix and zero matrix, respectively. We apply a Kalman filter to the 

proposed model. The model with system noise 𝜂(𝑘) and measurement noise 𝜁(𝑘) is defined as follows: 

 

[

𝑞𝐼(𝑘+1)

𝑞𝐼(𝑘)

𝑞𝑢(𝑘+1)

𝑞𝑣(𝑘+1)

] = 𝑓(𝑞(𝑘)) + [

𝜂𝐼(𝑘)

𝑂
𝜂𝑢(𝑘)

𝜂𝑣(𝑘)

], 

 

(15) 

 

𝑧(𝑘) = 𝐻𝑞(𝑘) + 𝜁(𝑘). (16) 

 

Note that the state 𝑞𝐼(𝑘−1) is the past signal and the noises are the current signals. Accordingly, the second element of the 

noise vector in (15) should be zero. As the proposed model is a non-linear dynamical system model, the extended Kalman 

filter can be applied to estimate the state of the model. The proposed model is expected to improve accuracy of optical flow 

estimation. However, due to increasing the number of the state, it is expected that the proposed method requires much more 

computational consumption. 

 

4. Numerical Experiments 
In this section, we validate the effectiveness of the proposed model in subsection 3.1 by numerical experiments. 

 

4.1. Description of Experiments 

In this experiment, the sequence of generated image in which the left half part is shrinking toward the center and the 

right half part is rotating is used. The brightness 𝐼(𝑟,𝜃,𝑘) of the left half and right half images are given respectively by 

 

𝐼1(𝑟,𝜃,𝑘) =
1

2
[sin{𝑘𝑟 log(𝑟 − 𝑘𝑤)} sin(𝑘𝜃𝜃) + 1], 

 

(17) 

𝐼2(𝑟,𝜃,𝑘) =
1

2
{sin(𝑘𝑟 log 𝑟) sin(𝑘𝜃𝜃 − 𝑘𝑤) + 1}, (18) 
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where (𝑟, 𝜃) represents the polar coordinates. The parameter values of the equations (17) and (18) are 𝑘𝑟 = 8, 𝑘𝜃 = 6, and 

𝑘𝑤 = −0.2𝑘. These parameters generate the time-invariant optical flow. We also set 𝑘𝑤 = −(0.2𝑘 + 0.02sin
𝑘𝜋

5
), which 

generates the time-varying optical flow. The optical flow estimation method based on the variational method [10] is known 

to be related to the solution of the time evolution equation including the diffusion term. Therefore, the diffusion term having 

the smoothing effect of the estimation is introduced [9]. At the edge of the estimation area, the diffusion term is determined 

by other equation. Estimation is performed on the white frame parts, whose size are 60×60 pixels, in Fig. 1. The covariance 

matrix of 𝜂𝐼(𝑘) is set to 0.001 I, i.e., the independent white noise with variance 0.001 is added to each pixel brightness. 

Similarly, the covariance matrices of 𝜂𝑢(𝑘) and 𝜂𝑣(𝑘) are set to 0.02 I. Also, the covariance matrix of 𝜁(𝑘) is set to 0.1 I. The 

Euler method with 1 time step per 1 frame is used as numerical integration. We used the endpoint error to assess the accuracy 

of optical flow estimation for each pixel. The endpoint error is the distance between the tips of the estimated flow vector 𝑈̃ 

and the true flow vector U, and may be determined by using equation (19). 

 

√(𝑈̃ − 𝑈)T(𝑈̃ − 𝑈) . (19) 

 

 
Fig. 1: The first frame of the video image. 

 

4.2. Comparison between Proposed Model and Conventional Model 
Numerical experiments are conducted by using the proposed and the conventional models. The proposed model requires 

the brightness at one time before as its state. Therefore, the estimation with the proposed model starts from the second frame. 

Figure 2 shows the time series of the average of endpoint errors; (a) time-invariant shrinking image, (b) time-invariant 

rotating image, (c) time-varying shrinking image, (d) time-varying rotating image. Table 1 shows the endpoint error average 

from 11 to 40 frames. 
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Fig. 2: Endpoint error average for each frame of the images. 

 
Table 1: Endpoint error average and processing time of 11 to 40 frames of the images. 

 

 Endpoint Error Average processing time[s] 

(a) (b) (c) (d) (a) (b) (c) (d) 

conventional model 0.5539 0.1310 0.5626 0.1768 23.1491 23.0325 23.0598 23.0790 

proposed model 0.3884 0.0640 0.4006 0.1328 67.0975 64.9123 65.4327 66.6394 

 

4.3. Discussion 
From Fig. 2, it is confirmed that the proposed method achieves higher estimation accuracy than the conventional 

method in the time-invariant shrinking and rotating images. As the proposed dynamical model uses the additional past 

time state, it might be possible that the estimation delay becomes large and deteriorates the estimation accuracy. 

However, Fig. 2 (c) and (d) show that the endpoint error of the proposed method is less than that of the conventional 

method even for the time-varying shrinking and rotating images. From Table 1, it is also confirmed that the proposed 

method requires much more computational consumption. It is due to the increase of the number of the state variables. 

The increase of the computational consumption is the drawback of the proposed method. 

 

5. Conclusion 
For the optical flow estimation method based on the dynamical system, we proposed to improve the accuracy of optical 

flow estimation by the central difference discretization of time derivative. Numerical experiments confirm the effectiveness 

of the proposed method in most cases. However, due to increasing the number of states, the computational consumption and 

the processing time increase. Therefore, it is necessary to consider a method to reduce the computational consumption. Also, 

the proposed model can only conduct estimation after the second frame. Thus, in the first frame, if we estimate the optical 

flow with another method and set the estimation value as the initial value in the proposed model, improvement of estimation 

accuracy can be expected. Moreover, although the Euler method is used as the numerical integration method in this 

(a) time-invariant shrinking image 

(c) time-varying shrinking image (d) time-varying rotating image 

(b) time-invariant rotating image 
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experiment, the Euler method is not very accurate. Therefore, it is necessary to consider integration method with more 

accurate numerical integration method. 
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