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Abstract- In neurosurgical procedures, precise preoperative planning requires extensive knowledge of the patients’ anatomy as well as 

critical structures for brain functionality. Recently, there has been an increase in the use of minimally invasive approaches, owing in part 

to advancements in multimodal medical imaging techniques such as structural (SC), and functional-based brain mapping (FC), which 

have been shown to be useful metrics for surgical trajectory planning. The main challenges associated with their use is the lack of intuitive 

visualization and interactive methods available to neurosurgeons and trainees. AR systems represent a pivotal advancement towards 

augmenting the training of trainees as well as providing a platform for senior surgeons to maintain their skills in a low-risk training 

environment. Advanced image processing was performed on multimodal neuroimaging data (T1- weighted image, diffusion weighted 

image, resting-state functional magnetic resonance imaging) to characterize the SC and FC of the brain. An AR application, NeuroAR, 

was designed to take these as inputs and allow the user to visualize and interact with the neuroanatomy in the context of its associated 

SC and FC. The performances of 10 users on 24 targets were evaluated using an extension of Fitts’ methodology. The users were able to 

use an interactive tool to select and visualize brain regions and their associated fibers. The fibers could be visualized based on their FC 

scores. As expected, the data showed that task difficulty increased as the volume of the fibers decreased. Movement time also increased 

as task difficulty increased. We introduced a new mobile device AR application based on data derived from advanced image processing 

of neuroimaging data. Evaluation of the 3D pointing tasks showed consistency in user performance indicating its utility.  
 

Keywords: Augmented reality, Neurosurgery, Surgical planning, Multimodal imaging, Image fusion, Visualization, Surgical 

simulation. 

 

 

1. Introduction 
Numerous neurosurgical procedures require extensive multimodal preoperative brain mapping for identification of a 

precise surgical trajectory that will spare eloquent cortex (i.e. cortex that if damaged will lead to severe neurological deficits) 

and other critical structures. The introduction of minimally invasive surgeries, which require a small “keyhole” entry point 

into the skull, further emphasizes the need for the surgeon to be able to preoperatively visualize and interact with relevant 

brain structures to safely plan the neurosurgical trajectory. Conventionally, surgeons are required to do cognitively 

demanding mental transformations to coordinate between preoperative two-dimensional (2D) patient-specific magnetic 

resonance images (MRI) and patient reference frames (i.e. three-dimensional, 3D, anatomy) [1]. Additionally, they need to 

adeptly manipulate instruments in the surgical field while looking at a 2D display of preoperative images[2]. This is 

particularly challenging in the case of junior trainees who may have limited previous surgical experience and less developed 

spatial and perceptual intuition. Ultimately, this leads to longer surgeries and increases the chance of error associated with 

reduced performance due to cognitive overload[1]. 

Augmented reality (AR) incorporates patient-specific virtual preoperative data onto the user’s vision of the real 

world[2],[3]. Medical applications of AR are on the rise in various fields of medicine both surgical (e.g. trajectory planning, 

training) and non-surgical (educational, psychiatric or psychological treatments). These have been extensively reviewed 

previously. [4]–[7]. AR use in neurosurgery includes AR systems for surgical planning, surgical navigation, or surgical 

training. These feature various methodologies and implementations (e.g. head-mounted display, augmented monitors, 

augmented optics) [8],[2]. Related work to NeuroAR, includes AR presurgical planning simulators aimed at facilitating 

training and planning of surgeries prior to the actual procedure, such as ImmersiveTouch[9], [10], a wearable Hololens 

device[11], mobile device AR applications [12], [13] (for review see[8], [14]). However, the majority of existing 
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neurosurgery AR systems are devoted to intraoperative use for tumor resection, open neurovascular surgery, 

ventriculostomy, or spinal surgery[2]. Additionally, in contrast to NeuroAR, none of the surveyed systems made use of 

advanced image processing techniques to derive and display FC and SC information. The benefit of using multimodal brain 

connectivity measures in brain mapping is well established [15]. Therefore, FC and SC image fusion display in AR is of 

particular interest because it not only adds visuospatial context but also provides information about the importance of 

different brain areas based on preoperative scans (i.e. eloquence scores)[16], [17].  

In this paper, we introduce a mobile device AR system, NeuroAR, designed and evaluated with human factors in mind, 

which allows real-time, intuitive, 3D visualization and interaction with brain structures and multimodal brain connectivity 

to facilitate training for neurosurgical procedures. Specifically, the individualized identification of eloquent cortex is 

facilitated by our system which displays both patient specific brain structural connectivity (SC) and functional connectivity 

(FC), as well as anatomical landmarks derived from MRIs. To evaluate the performance of the AR application, we extended 

Fitts’ methodology and applied to a 3D pointing task guided by a 3D environment, presented on a mobile device screen (i.e.  

2D display).  

 

2. Materials and Methods  
2.1. MRI data acquisition and processing 

A functional resting-state fMRI (rs-fMRI) (TE = 27 ms, TR = 2100 ms, flip angle = 80°, FOV = 200 mm), structural T1-

weighted image (time echo [TE] = 2.27 ms, time repetition [TR] = 1900 ms, field of view [FOV] = 256 mm, voxel size 1.0x 

1.0 x1.0 mm) and diffusion weighted image, DWI (TR = 8400 ms, TE = 88 ms, b value = 1000 s/mm2, and voxel size 2.0 × 

2.0 × 2.0 mm) were acquired from a healthy participant (30 years old, female). All the scans were acquired using a Siemens 

Trio 3T magnet. The MRI data were processed and then used as inputs in the AR application. 

The T1-weighted image was analyzed using Freesurfer (v5.3) automated processing pipeline 

(http://surfer.nmr.mgh.harvard.edu/), to obtain the topological representation of the grey matter (i.e. cortical brain regions) 

in the form of a mesh brain surface. The standard steps for processing were implemented: motion correction[18], brain 

extraction using a watershed/surface deformation procedure [19], affine transformation (12 degrees of freedom) to the 

Talairach image space, non-uniform intensity normalization[20]. The brain was segmented into white matter (WM), grey 

matter (GM), and cerebrospinal fluid (CSF). Next, surface deformation following voxel intensity gradients to optimally place 

the grey/white and gray/CSF borders at the location where the greatest shift in intensity defines the transition to the other 

tissue class are performed to create a surface model of the brain [21]–[23]. Freesurfer’s Desikan-Killiany Atlas was used to 

characterize the brain regions used in this study[24].  

Next, 3D slicer (v4.9) (http://slicer.org) module Model Maker was used to create individual 3D VTK models of each 

brain region using each region’s boundaries via a marching cube algorithm. The DWI was processed with FSL topup and 

eddy current correction to reduce artefacts (https://fsl.fmrib.ox.ac.uk/). 3D slicer modules DWI to DTI Estimation and 

Tractography Label Map seeding were used to generate fiber tracts of the WM (i.e. tractography) as VTK files using the 

DWI image. The algorithm matching brain regions to their WM fibers is based on MultiXplore 

(http://www.nitrc.org/projects/multixplore/) , a scriptable module which can be added to 3D Slicer, previously discussed by 

Bakhshmand et al., (2017)[17]. Briefly, to obtain SC, WM fibers are clustered based on their intersection with cortical brain 

regions. FC was derived from the rs-fMRI, which was processed using an in-house pipeline composed of NiftiReg 

(http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg) and FSL. The average of fMRI signals in each brain region was 

extracted, and a FC matrix was obtained. 

 
2.2. Augmented Reality processing 

For the 3D rendering of augmented reality, Unity was used with Vuforia Engine (http://unity3d.com): Unity: v2018.1.0, 

Vuforia: 7.2.24, any Android device running Android 7.0 or higher; tested on Samsung Galaxy S8+, and Samsung Galaxy 

Tab S2. Given the VTK (https://www.vtk.org) file format, a Unity-compatible model had to be generated. This was done 

manually, by using Paraview (https://www.paraview.org) to change each VTK file into a .x3d file and then through Blender 

(https://www.blender.org) by importing the .x3d files and exporting them as .obj files. To ensure WM fiber visibility, in 

Blender, the bevel attribute of the shape’s geometry was adjusted (between 0.01 to 0.1). 

Each model was individually brought into Unity and grouped together. For each fiber tract a button was created and 

connected to a brain region based on determined SC. These buttons were then added the functions to show or hide the 

associated fiber and connected regions.  

http://slicer.org/
http://www.nitrc.org/projects/multixplore/
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The FC matrix was also imported into Unity where it was parsed and saved during runtime. Using the parsed matrix 

data, the buttons for each fiber bundle were then coloured based on the correlation/connectivity strength of the two regions 

in the matrix, with dark red being at 1, green at 0, dark blue at -1, with in-between values being coloured along a gradient. 

A new Unity material with a custom vertex normals shader was created for use on the fibers. For each vertex, their 

normal was calculated and then translated into a colour: an RGB value between 0 and 1. This gives the fibers a distinct colour 

based on their three-dimensional direction. 

 
2.2. Participants 

10 subjects participated in the experiment. The participants were university graduate students or undergraduate students. 

They all had normal or corrected-to-normal vision. All participants were novices in using AR devices and had minimal to no 

neuroanatomical knowledge. Therefore, 1 training trial was performed before engaging in the test tasks. Informed consent 

was obtained from all individual participants included in the study. All procedures performed in the study involving human 

participants were in accordance with the ethical standards of the ethics committee of the Faculty of Psychology and 

Educational Sciences of the University of Geneva and the Swiss Ethics committee, and with the 1964 Helsinki declaration 

and its later amendments.  

 
2.3. Evaluation Method 

A study consisting of a pointing task was used to evaluate the performance achieved by the AR application. Studies 

indicate that Fitt’s law[25], a mathematical model used to describe the relationship between target size, distance, and 

movement time is a validated method for evaluating graphical interfaces and pointing tasks. First, an index of difficulty (ID) 

was calculate for each fiber tested, to evaluate the complexity of the pointing task. Index of performance (IP) was used to 

calculate movement time based on ID to indicate human performance. Human performance is defined as a trade-off between 

accuracy and speed.  

 

𝐼𝐷 = log2(2𝐴/𝑊)                                                                                    (1) 
 

Where A is the distance between the center of the start cube and the center of the fiber, and W is the volume of the fiber. 

 

𝐼𝑃 =
𝐼𝐷

𝑀𝑇
                                                                                                     (2) 

                                 

Where ID is the index of difficulty and MT is the movement time for the task. 

 
2.4. Experiment 

Unity with Vuforia were used for augmented reality rendering (Unity: v2018.1.0, Vuforia: 7.2.24), testing was done on 

Samsung Galaxy S8+, see Figure 1 for setup. Basic instructions about navigating the AR environment were given to the 

users. The users had a trial run to get comfortable using AR tool. Once the users were comfortable with interaction between 

the tool and the fibers, the testing began. Briefly, the users had to push a button “Perf Test”, use the tool to collide with an 

AR cube, use the tool to touch the fiber, and finally touch any point on the screen when they were confident with their 

interaction. Upon clicking the button, the menu was hidden from the user, a single WM fiber was isolated along with the 

brain regions it connects and the start cube was generated. Besides touching the WM fiber and the cube nothing else can be 

done, limiting random mistakes from users. Once the user touches the cube, it disappears giving the user the visual cue that 

the test has begun, where they are expected to touch the fiber; at this point data collection begins. When the user was certain 

they touched the fiber, they had to tap the phone screen with their finger, ending the data collection and the test for that fiber. 

This screen tap can only be done after the start cube has been touched, meaning that the user could not accidentally end the 

test before it began. The user repeated the process for 24 WM fibers which were all logged. Once all the data had been saved, 

the original menu reappears signalling to the user that they have completed the task. The test fibers were chosen through an 

even distribution. All the fibers were pooled into a list and apart from the first fiber, were chosen based on their position in 

the list. The first fiber was randomly generated within the first 4% (1/25th) of the list. The rest of the fibers were chosen by 

going to the position relative to the test number, e.g. the second test was the fiber 2/25ths down the list. This resulted in the 

last fiber always being the last one in the list. To ensure the fibers were always the same, they were organized by originating 
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brain region, and ensuring that no fiber was duplicated (there was only one fiber per two brain regions). For the pilot, a test 

size of 25 was decided, with 24 fibers being used to test the index of performance per user. After the user touched the start 

cube, data collection began, and a start time was recorded. Each frame, the position (3D, x, y, z in units used by Unity) and 

rotation (quaternion, w, x, y, z) of the needle relative to the fiber was logged, along with the time stamp. This resulted in 

position and rotational data being recorded about 60 times per second. Once the user completed the task by tapping the 

screen, the positional and rotational data was saved as a CSV file with the  

associated task’s number. Upon completion a second CSV file was generated which had the name of the fiber in the 

task, the calculated distance of the fiber from the start cube, the volume of the fiber and the total task time (time recorded at 

the end, subtracted by the start time). The volume of the fiber was calculated using the triangles and vertices of the fiber’s 

mesh, resulting in larger fibers having larger volumes.   

The test lasted approximately 15 minutes and could be done with a student population. 

 
Fig. 1: The user’s view during the pointing task through the mobile screen of the augmented reality application. Show LH, show left 

hemisphere; Show RH, show right hemisphere; Hide All, hide all brain regions; Show All, show all brain regions; Menu takes the user 

to the functional connectivity buttons. 

 
2.5. Uses 

The user has many options on screen to choose from a) show, hide all the WM fiber tracts with their associated brain 

regions, b) individually show, hide WM fiber tracts, c) visualize the tractography (all WM fiber bundles) within the brain 

surface mesh or by itself, d) show, hide transparent brain surface mesh of the left and right hemispheres (see Figures 2, 3). 
The background of the buttons on the menu are coloured based on FC. With these options the user is able to visualize as 

much of the tractography as they want, with or without the associated brain regions, and isolate certain clusters of brain 

regions of interest in the participant’s brain. 

There is also an option for the user to see which features are connected via interaction, where they can use an interactive tool 

to select different brain regions or the WM fibers between them. 

Specifically, the user can use an interaction tool to touch the augmented model. If the tool comes into contact, via Unity’s 

built-in collision system, with any WM fiber bundles it will highlight the contacted fibers as well as their source brain regions 

in yellow. This allows the user to physically test surgical paths and view which areas would be affected. At that point, the 

user is only able to interact with shown tractographies. 

Figure 1. The user’s view during the pointing task through the mobile screen of the augmented reality application. Show LH, show left hemisphere; Show RH, show right hemisphere, Hide All, hide all brain regions, Show All, show all brain regions. 
Menu takes the user to the functional connectivity buttons. 
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Fig. 2: The user’s view through the mobile screen of the augmented reality application. The user can explore the neuroanatomy and 

structural connectivity of the brain using the tool.  A) Axial view of the cortical surface mesh model of cortical grey matter. B)  Sagittal 

view of the cortical surface mesh model of cortical grey matter. C) Depiction of user selecting a brain region on the cortical surface 

mesh model using the interactive tool. Region selected is yellow. D) View of the user exploring the structural connectivity between 

various regions (listed on the left side of the figure). Full model is hidden and only the brain regions selected are shown. 

 

 
Fig. 3: The user’s view through the mobile screen of the augmented reality application. The user can explore the neuroanatomy and 

both the structural and functional connectivity of the brain using the tool. Background of the buttons indicate the strength of the 

functional connectivity between the regions -1 strong negative, +1 strong positive. The user can explore these functionalities using the 

scroll bar.  

 
3. Results  

When using the AR application, anatomical detail (brain regions/structures) from the segmented T1 was able to be fused 

with a) the SC obtained from the processed DWI scan in the form of WM fiber bundles, b) the FC obtained from the processed 

rs-fMRI in the form of color-coded buttons. The buttons link two brain regions. 
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3.1. Performance test results 

Table 1, Figure 4 and Figure 5 indicate the outcome of the participants’ trials in terms of the pointing tasks. Overall, our 

data showed that there was consistency in the responses of the users as depicted in Figure 5. As the volume of the WM fibers 

increased task difficulty decreased. As expected, as task difficulty increased so did movement time, depicted in Figure 4. 
 

Table 1: Outcome of subjects’ (n = 10) trials in terms of tasks (n = 24). For each pointing task/fiber target, the average and standard 

deviation of the performance of all subjects at that task was calculated. The volume and index of difficulty were constant across 

subjects and varied per task. MT, movement time; IP, index of performance; Volume, volume of the fibers; ID, index of difficulty. 

 
 

  Avg SD Avg SD     

Task 

no. MT (seconds) IP (u2bits/seconds) Volume (u3) ID (u2bits) 

1 3.397 ± 1.302 1.698 ± 0.521 0.009224 5.198 

2 7.787 ± 3.745 1.653 ± 1.257 0.000541 9.301 

3 5.233 ± 5.047 3.155 ± 1.524 0.000199 10.777 

4 3.318 ± 1.601 3.316 ± 1.247 0.000501 9.448 

5 9.451 ± 8.205 2.324 ± 2.120 0.000128 11.403 

6 11.321 ± 9.220 1.301 ± 0.876 0.000694 8.970 

7 5.258 ± 2.799 1.492 ± 0.679 0.004168 6.310 

8 5.340 ± 3.336 2.629 ± 1.862 0.000541 9.256 

9 3.013 ± 1.606 2.131 ± 0.971 0.010089 5.103 

10 6.522 ± 10.968 3.438 ± 2.720 0.00391 6.489 

11 4.940 ± 4.423 1.995 ± 1.484 0.009264 5.233 

12 7.970 ± 6.953 1.921 ± 1.606 0.00114 8.249 

13 5.455 ± 3.395 2.609 ± 1.341 0.000201 10.703 

14 11.360 ± 9.287 1.705 ± 1.151 5.77E-05 12.494 

15 6.649 ± 9.244 3.920 ± 2.637 6.06E-05 12.464 

16 4.333 ± 3.582 5.022 ± 2.855 2.45E-05 13.827 

17 2.230 ± 1.386 5.145 ± 1.992 0.000547 9.306 

18 4.302 ± 2.223 2.666 ± 1.904 0.000968 8.519 

19 4.503 ± 4.692 2.730 ± 1.496 0.002858 6.965 

20 4.771 ± 3.030 4.500 ± 3.099 2.04E-05 14.081 

21 4.108 ± 2.273 4.048 ± 1.787 3.45E-05 13.298 

22 7.562 ± 5.814 1.984 ± 1.208 0.000425 9.620 

23 5.322 ± 3.536 3.008 ± 1.710 0.0001 11.723 

24 6.234 ± 4.895 3.070 ± 1.988 0.000117 11.457 
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Fig. 4: Illustration of trends and relationships between various indices calculated according to Fitts Law.  The values plotted represent 

the average response of the participants at each target. 

 

 
 

Fig. 5: Average index of performance of each user per pointing task/fiber target. 

Based on the results of the performance test, the users found the application useable and were even able to interact with smaller 

fibers at the same speed as some of the larger ones. This is most notable with tasks 20 and 21. The overall trends presented in Figure 5 

show that most of the tasks were performed similarly among users, confirming the usability of the application. Any unexpected peak 

performances can be attributed to user error, as some users accidentally ended the task without touching the fiber, which led to higher 

standard deviation (most notable at task 10, 16, 20). 

 

4. Conclusion 
It is well established that minimally invasive approaches are beneficial to patient outcomes, and consequently it is crucial 

to maximize their safety and use. AR visualization and interaction with preoperative multimodal brain connectivity allows 

the surgeon to safely explore the patient anatomy and identify eloquent cortex based on advanced image processing, as well 



 

 
 

ICBES 126-8 

as try different neurosurgical approaches prior to surgery. Furthermore, our tool can also be used as a potential 

educational model for neurosurgical residents and medical students for neurosurgical planning. When tested amongst a 

pilot group of students, the users found the application useable and were able to interact with both small and large fibers 

without any issues. As expected, when targeting fibers with higher indices of difficulty, the movement time of the users 

increased, which is consistent to the extended Fitts’ methodology. 
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