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Abstract - LIDAR is one of remote sensing technologies to measure the distance between the sensor and objects (e.g. pedestrians, 

vehicles) with pulsed laser light, accurately. Because of its robustness to dynamic lighting conditions and obtainable high spatial 

resolution, recognition methods using LIDAR have a good capability in object recognition. This is the reason why utilizing LIDAR for 

autonomous vehicle and/or supporting safety driving systems. In this paper, we focus on a vehicle detection method using LIDAR, and 

assess the feature descriptors, including two kinds of our proposal descriptors, for point cloud data. Furthermore, we validate appropriate 

feature descriptors using Real AdaBoost algorithm. 
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1. Introduction 
In recent years, safety and convenience of automotive have been drawing increasing attention in the automotive industry. 

Because of that, Advanced driver-assistance systems (ADAS) and Autonomous driving system [1, 2] have been actively 

developed, and these systems are expected to become widespread. Camera, Millimeter-wave radar, and Laser Imaging 

Detection and Ranging (LIDAR) are typical sensors used to detect targets on road environments. Camera is able to acquire 

detailed information of the target. However, it is easily affected by environment lighting condition such as night and back 

light. Millimeter-wave radar is easily affected by environmental changes. However it is not good at identifying the shape and 

type of the targets. On the contrary, LIDAR is robust against lighting changes. In addition, it can obtain the information of 

distance to the target and the three-dimensional (3D) shape with high accuracy. Therefore, the utilization of LIDAR in ADAS 

and Automated driving is attracting attention. 

There are various types of target detection using LIDAR, such as pedestrian detection [3, 4], utility pole detection [5], curb 

detection [6], and vehicle detection [7, 8]. According to the occurrence of traffic accidents in 2017 [9] announced by the Tokyo 

Metropolitan Police Department of Transport Bureau, the number of collisions between vehicles accounts for the majority 

of traffic accidents. Therefore, vehicle detection is an essential technology to reduce collisions between vehicles, and it is 

necessary to grasp the distance of nearby vehicles with high accuracy. In this paper, we focus on a vehicle detection method 

using LIDAR [7]. We designed the feature descriptors of point cloud data acquired by LIDAR and performed classification 

with Support Vector Machine (SVM). In addition, we examined appropriate feature descriptors with Real AdaBoost. 

 

2. Vehicle detection by LIDAR  
This chapter describes detecting method of vehicle using LIDAR. The flow of vehicle detection is as follows. First, 

vehicle candidates are selected from 3D point cloud data acquired by LIDAR. Next, selected vehicle candidates are calculated 

features using feature descriptors. Finally, the calculated features are input to the classifier. If the probability that a vehicle 

candidate is estimated to be a vehicle is equal to or more than a threshold, vehicle candidate regarded as a "vehicle". Each 

procedure is detailed in procedure by the following sections. 

 
2.1. Selection of vehicle candidate data 

The flow of selecting a vehicle candidate is as follows. First, the road surface is determined to detect 3D objects. Next, 

3D objects are detected based on an occupancy grid map. Then, a cluster is created for point cloud data detected as 3D object. 

Finally, vehicle candidates are selected based on the size of the cluster. 
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2.1.1. Determination of road surface 

In this paper, the road surface is detected based on RANdom SAmpling Consensus (RANSAC) algorithm [10]. The 

plane equation is obtained using Eq. (1): 

 

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑. (1) 
 

Since the height of the point at which LIDAR is positioned on the vehicle is known, the height from the road surface z can 

be calculated.  Therefore, if the 𝑧 value satisfies Eq. (2), the estimated plane is regarded as the road surface: 

 

𝑝min ≤ 𝑧 ≤ 𝑝max . (2) 
 

2.1.2. 3D object detection based on an occupancy grid map 

3D object is detected based on the occupancy grid map [11]. First, the grid map of width 𝑤 is set on the 𝑥𝑦 plane of 

the input data as shown in Fig. 1. Next, the variance value 𝜎𝑧 of the 𝑧-axis of the grid is calculated for each grid. If 𝜎𝑧 

is equal to or more than the threshold 𝜏, 3D point cloud data in the grid is detected to be a 3D object. 

 
2.1.3. Creating a cluster using Euclidean clustering  

After detecting the 3D object, Euclidean Clustering [12] is performed on it. In Euclidean Clustering, if some points 

are within the range of a certain distance from a point, they are regarded as the same object and grouped together.  

Therefore, multiple clusters are created from one frame of 3D point cloud data. 

 
2.1.4. Determination of vehicle candidate data based on cluster size 

Vehicle candidates are selected based on the size of the created the cluster. Eq. (3) to (5) show conditions for 

selecting vehicle candidates: 

 

ℎmin ≤ ℎ ≤ ℎmax, (3) 

𝑤min ≤ 𝑤 ≤ 𝑤max, (4) 

𝑙min ≤ 𝑙 ≤ 𝑙max. (5) 

 

Here, ℎ is the height of the cluster, 𝑤 is the width and 𝑙 is the length. If all the expressions are satisfied, the cluster is selected 

as a vehicle candidate. Fig. 2 shows an example of vehicle candidate data selected based on cluster size. 

 
2.2. Feature extraction of vehicle candidate 

By using LIDAR, we can obtain the distance to detect objects and the 3D shape with high accuracy. In addition, it 

is possible to measure the intensity information of reflected light (hereinafter referred as "reflection intensity") of the 

3D point cloud data and to estimate information such as the surface normal and object’s material. In this paper, we focus 

on these characteristics and design feature descriptors for vehicle detection using information acquired by LIDAR. Table 

1 shows the feature descriptors used in this paper: The features 𝑓1 is proposed by Kidono et al. [3]. The features 𝑓2 is 

proposed by Enokida et al. [4]. The features 𝑓3 and features 𝑓4 are newly proposed by the author. In this paper, features 

are calculated from the vehicle candidate, and the feature vector 𝒇 = (𝑓1
𝑇 𝑓2

𝑇 𝑓3
𝑇 𝑓4

𝑇)𝑇is constructed. Each procedure is 

detailed in the following sections. 

 

[ 𝑓1：Distribution of the reflection intensity [3] ] 

By using LIDAR, it is possible to measure the reflection intensity of the 3D point cloud data. The value of reflection 

intensity can be varied depending on the distance to the objects and the object’s material. The following three values are 

computed from the vehicle candidates, and the feature vector 𝑓1 is constructed. 

 

i)    Mean of the reflection intensity 

ii)   Standard deviation of the reflection intensity 



 

 

 

 

MVML 107-3 

iii)  Normalized histogram: the number of bin is 25 and the range of the reflection intensity is divided at equal intervals. 

 

 

 

[ 𝑓2：Distribution of the type of the 3D shape [4] ] 

 

The rough shape of the object can be obtained from 3D point cloud data acquired from LIDAR. We explain how to 

calculate features as follows. First, vehicle candidates are divided into 𝑁𝑒 at equal intervals in the height direction from the 

road surface. By dividing the area, we obtain the local shape of the vehicle candidate (hereafter, the divided local area is 

called "slice"). Next, we use a particular point and its surrounding point clouds to compute eigenvalues in the each slice. To 

compute eigenvalues, we compute a variance-covariance matrix from the set of point clouds within a region of radius 𝑟𝑒 

surrounding the particular point. Then, we apply Principal Component Analysis (PCA) to the variance-covariance matrix 

and obtain eigenvalues 𝜆1, 𝜆2, 𝜆3 (𝜆1 ≥ 𝜆2 ≥ 𝜆3). After that, we compute three values 𝑆0
𝑖 , 𝑆1

𝑖 , 𝑆2
𝑖  as in Eq. (6) to (8) (where 𝛼 

and 𝛽 are correction coefficients): 

 

𝑆0
𝑖 = 𝜆1 −  𝛼𝜆2, (6) 

𝑆1
𝑖 =  𝜆2 −  𝜆3,  (7) 

𝑆2
𝑖 =  𝛽𝜆3.          (8) 

 

If the value 𝑆0
𝑖   is the maximum among the three values, we judge the shape of the particular point to be “pole” shaped; if 𝑆1

𝑖  

is the largest, we consider the point to be “plane” shapes; if 𝑆2
𝑖  is the largest, we consider the point to be “solid figure” shape. 

If the point cloud 𝑖∗ surrounding the particular point satisfies (|𝑖∗ |  ≤  1), the point is determined to be “unclassified”. Fig. 

3 shows the distribution of the appearance frequency of the 3D shape in each slice. Therefore, we utilize the distribution as 

the feature and construct the feature vector 𝑓2. 

 

[ 𝑓3：Distribution of co-occurrence of the 3D shapes] 

In this feature descriptor, multiple local shapes are acquired, and their co-occurrence relationship is calculated. We 

explain how to calculate features as follows. First, vehicle candidates are divided into 𝑁𝑐 at equal intervals in the height 

direction from the road surface. Next, we use the particular point in the each slice and its surrounding point clouds to compute 

eigenvalues. To compute eigenvalues, we consider the set of point clouds within a region of two radius 𝑟𝑒 and 𝑟𝑐 surrounding 

remarkable point, and we compute a variance-covariance matrix. Then, we apply PCA to the variance-covariance matrix and 

obtain eigenvalues 𝜆1, 𝜆2, 𝜆3 (𝜆1 ≥ 𝜆2 ≥ 𝜆3). After that, we compute three values 𝑆0
𝑖 , 𝑆1

𝑖 , 𝑆2
𝑖  as in Eq. (2.6) to (2.8). The shape 

estimation method is the same as 𝑓2. Fig. 4 shows the distribution of co-occurrence of the 3D shapes in each slice. Therefore, 

we utilize the distribution as the feature and construct the feature vector 𝑓3. 

 

[ 𝑓4：Number of points included in the local field ] 

The uniqueness of the vehicle’s 3D point cloud distribution is the body of the vehicle reflects the light from the sensor 

while the glass is passed through. Therefore, we considered that a characteristic distribution of point cloud could be obtained 

from the roof to the tires of the vehicle. In this feature descriptor, we calculate data for each slice as the feature. We explain 

how to calculate the feature as follows. First, the total score of point cloud data is obtained from the vehicle candidate. Next, 

the vehicle candidate is divided into 𝑁𝑐 at equal intervals in the height direction from the road surface. Finally, the score of 

point cloud data is calculated from each slice, and the value is normalized with the total score of the vehicle candidate 

Table 1: Feature Descriptor for Vehicle Classification 

No. Feature Descriptor Dimensionality ID 

𝑓1 Distribution of the reflection intensity 27 #1 ~ 27 

𝑓2 Distribution of the type of the 3D shape 40 #28 ~ 67 

𝑓3 Distribution of co-occurrence of the 3D shapes 160 #68 ~ 227 

𝑓4 Number of points included in the local field 10 #228 ~ 237 
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calculated in the previous step. Fig. 5 shows the score of point cloud data is obtained from each slice. We utilize the 

distribution as the feature and construct the feature vector 𝑓4. 

2.3. Vehicle detection by classifier 
Vehicle detection is performed by inputting the calculated the feature vectors to the trained classifier. Vehicle data 

as the positive data and non-vehicle data as the negative data are used to train the classifier. Fig. 5 shows examples of 

training data corresponding to vehicle data and non-vehicle data. Vehicle data includes vehicles taken from various angles, 

and non-vehicle data includes signs, plants, parts of buildings, etc. In this paper, we utilized SVM [13] and Real AdaBoost 

[14] as classifiers. The following describes each classifier in detail. 

 
2.3.1. SVM-based classifier 

SVM is supervised learning model used for classification and regression analysis. The classification boundary is 

constructed to maximize the margin, which is the distance between the support vector in the training data and the 

classification boundary. Once the classification boundary is constructed, binary classification is performed. The 

advantages of SVM are the following: the accuracy is good even when there is little learning data or the feature dimension 

is large; generalization capability to classify new data is high. On the other hand, the disadvantages of SVM are the 

following: the cost of calculation increases as the amount of learning data increases; since it is a black-box model in 

which the input-output relationship is not explicit, it is difficult to interpret which features affect the identification result 

and performance. 

 
2.3.2. Real AdaBoost-based classifier 

Real AdaBoost is an ensemble learner that constructs a strong classifier with high classification ability by combining 

weak classifiers with low classification ability sequentially. The advantages of Real AdaBoost are the following: since 

the output of weak classifiers is a real number, it is possible to respond flexibly to changes in the input, leading to 

improved accuracy; since the degree of classification with respect to the test data can be grasped, it is possible to interpret 

which features lead to the classification result and analyze the identification performance. On the other hand, the 

disadvantages of Real AdaBoost is that it is necessary to determine the number of learning experimentally.   

In the learning process, among the weak classifier candidates found in each learning, the one with the highest 

evaluation value is selected as the weak classifier. Here, one weak classifier indicates one feature vector. In this paper, 

we focus on the weak classifiers and consider them as good features for classification. 

 

3. Experiments  
To confirm the effectiveness of the feature descriptors for vehicle detection, the quantitative evaluation on 3D point 

cloud data was carried out. First, the identification performance by SVM was examined. Next, we utilized Real 

AdaBoost to interpret which features affect to the identification results and analyzed the performance. Finally, the 

identification performance by SVM where only the features selected by Real AdaBoost was examined. 

 

 

 

[a] input data 

 
[b] output data 

Fig. 1: Example of point cloud 

data projected into 𝑥𝑦 plane. 

Fig. 2:  Example of vehicle 

candidate data based on cluster 

size. 

Fig. 3:  Distribution of the type of the 3D shape. 
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3.1. Experimental condition 
Fig. 7 shows high resolution LIDAR sensor device named “HDL-64E-S3” manufactured by Velodyne Inc. Experiment 

data were obtained in a real road environment by LIDAR. Experiment data were obtained while driving around the Kyushu 

Institute of Technology, Iizuka Campus, and manually labelled data was used for learning and evaluation of the classifier. 

In order to evaluate the identification performance according to the distance, the data of the vicinity of 10m (5-15m) and the 

vicinity of 30m (25-35m) from LIDAR are prepared respectively. Table 2 shows the number of experimental data for each 

distance. The Point Cloud Library (PCL) [16] was used as a library to handle 3D point cloud data, and the parameters in Table 

3 were used in the experiment. 

 
 3.2. Experiment of identification performance by SVM 

In this section, the identification performance by SVM was examined. We used SVM with the Radial Basis Function 

(RBF) kernel as the classifier, and Receiver Operating Characteristic (ROC) curve obtained by 10-fold cross validation was 

used for evaluation.  

First, we checked the identification performance when using feature descriptor one by one. Fig. 8 shows the experimental 

results. From the results, it was confirmed that 𝑓4 shows the highest performance at all distances. In addition, it was confirmed 

that the identification performance of all feature descriptors become worse as the detection target is in the farther distance. 

Next, we examined the identification performance when using feature descriptors in combination. Fig. 9 shows the method 

used for comparison and Fig. 10 shows the experimental results. From the results, it was confirmed that the methods 8, 9 and 

11 using 𝑓4 show high identification performance at all the distances.  

Based on the experimental results, we can conclude that the identification performance was improved by combining 𝑓4 

(which showed the highest performance in the first experiment) with other features. In addition, the combination of feature 

descriptions using different features such as 𝑓1 and 𝑓3 as in method 2 led to improved performance. On the other hand, the 

combination of feature descriptors using the same type shape features of 𝑓2 and 𝑓3 as in Method 4 did not lead to performance 

improvement. Therefore, improvement of identification performance can be expected by combining different type of features 

together. 

 

 

 

 

 

Fig. 4:  Distribution of co-occurrence of the 3D shapes. Fig. 5: Number of points included in the local field. 

  

 
 

 
[a] positive data (vehicle) [b] negative data (non-vehicle) Fig. 7: Data measurement using LIDAR and 

experimental car. Fig. 6:  Examples of learning and evaluation data. 
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3.3. Experiment of identification performance by Real AdaBoost 

In this section, the identification performance by Real AdaBoost was verified. In this experiment, Real AdaBoost 

was trained 500 times and evaluation was performed by 10-fold cross validation.  

First, we compared the identification performance of the classifier based on SVM and the classifier based on Real 

AdaBoost. SVM used all feature descriptors shown in Table 1, and Real AdaBoost used only automatically selected 

features. For evaluation, we used the F-value, which is the harmonic mean of recall and precision. Table 4 shows the 

experimental results. From the results, it is confirmed that the classifier by Real AdaBoost shows performance equal to 

or better than the classifier of SVM. Therefore, it is expected to show equal or better performance while maintaining 

the generalization capability of SVM by using only the feature automatically selected by Real AdaBoost for 

identification. Next, we examined the tendency of feature selection based on Real AdaBoost in the above experiment. 

Fig. 11 shows the learning results for each distance. From the results, it was confirmed that the features selected at each 

distance are different.  

Based on the experimental results, we found the selection tendency of each feature descriptor. The feature 

descriptor 𝑓1, in the near distance, was selected in well-balanced way regardless whether the reflection intensity is low 

or high. On the other hand, in distant area, the part with lower reflection intensity was not selected and the part with 

high reflection was selected. The feature descriptors 𝑓2 and 𝑓3 were selected differently depending on the local area of 

the cluster, and the features that are not selected increased in the distant area. The feature descriptor 𝑓4 was selected 

with well-balance in each local area regardless of the distance. From the above, by using Real AdaBoost, it became easy 

to analyze the features leading to the identification results, and the existence of the features selected at each distance 

became clear. 

Table 2:  Number of experimental data. 

 

Table 4: Evaluation of identification performance each discriminator. 

 

data 10m 30m F-value 10m 30m 

Vehicle data 1,925 1,326 SVM 0.941 0.883 

Non-vehicle data 1,216 1,025 Real AdaBoost 0.973 0.894 

Table 3: Parameters used in experiment. 

 

Parameter name Value Section Parameter name Value Section Parameter name Value Section 

𝑝min 1.7 
2.1.1. 

ℎmax 2.5 

2.1.3. 

𝛼 5.0 

2.1.3 

𝑝max 1.9 𝑤min 1.0 𝛽 10.0 

σ 0.35 
2.1.2. 

𝑤max 2.5 𝑁𝑐 , 𝑀 10 

𝑡𝑧 0.05 𝑙min 0.0 𝑟𝑒 0.35 

ℎmin 1.0 2.1.3. 𝑙max 5.0 𝑟𝑐 2.5 𝑟𝑒 

   
[a] 10m [b] 30m 

 Fig 9: The method used in Experiment 3.2. 
Fig. 8: Results of performance tests for various feature quantities. 
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3.4. Evaluation experiment of classifiers constructed based on feature selection 
This section, we performed an evaluation experiment of classifiers constructed with features selected based on Real 

AdaBoost. For verification, we prepared three classifiers, as follows: Classifier1 utilized all feature descriptors to learn the 

classification rule (237 dimensions). Classifier2 utilized features selected at least once with Real AdaBoost in Section 3.3 to 

learn the classification rule (113 dimensions). Classufuer3 utilized feature descriptors 𝑓1 and 𝑓4 to learn the classification 

rule (37 dimensions). In the experiment, the discrimination performance of three prepared classifiers was evaluated by 

utilizing raw data obtained in the vicinity of 10m. The ROC curve obtained by 10-fold cross validation was used for 

evaluation. Fig. 12 shows the experimental results. The results show that Classifier2 has higher identification performance 

than Classifier3. Furthermore, Classifier2 showed almost same identification performance as Classifier1. From the above 

results, it is expected to construct a high-performance classifier by using only features that are effective for classification. In 

addition, it is expected to maintain identification performance while reducing the number of dimensions by considering 

feature selection based on Real AdaBoost. 
 

4. Conclusion 
In this paper, we focus on a vehicle detection method using LIDAR and assessed the feature descriptors for point cloud 

data acquired by LIDAR. Furthermore, we examined the appropriate feature descriptors using Real AdaBoost algorithm. 

From the experimental results, it was confirmed that improvement of identification performance can be expected by 

combining feature descriptions with different type of features. In addition, by using Real AdaBoost, it became easy to analyze 

the features leading to the good identification performance, and the existence of the features selected at each distance became 

clear. Furthermore, it can be expected to maintain identification performance while reducing the 

  
[a] 10m [b] 30m 

Fig. 10: Results of performance tests for various method quantities. 

  
[a] 10m [b] 30m 

Fig. 11: Frequency of feature selection by Real AdaBoost. 
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number of dimensions by considering feature selection based on Real AdaBoost. From the above, we expect that it will be 

an indicator to design feature descriptors for vehicle detection using LIDAR. 

In the future, we plan to examine the new feature descriptor proposal such as interpolation of the point cloud. 
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