
Proceedings of the 6th World Congress on Electrical Engineering and Computer Systems and Sciences (EECSS’20)

Prague, Czech Republic Virtual Conference – August, 2020

Paper No. CIST 103

DOI: 10.11159/cist20.103

CIST 103-1

Accelerating Clustering: An Architectural Approach

Mihaela Malița
1
, Gheorghe M. Ștefan

2

1
Smith College

Northampton, MA

mmalita@smith.edu; gheorghe.stefan@upb.ro
2
Politehnica University of Bucharest

Bucharest, Romania

Abstract – The iterative nature of the clustering algorithms demands support for acceleration, not to mention that some of them have

the time complexity of each iteration in O(n
2
) or even in O(n

3
). Six of the most frequently used clustering algorithms are investigated

from the point of view as how they can be executed on a parallel accelerator. The resulting computational patterns are used to define

the architecture of a p-cell accelerator as part of a heterogeneous computing system. For all the investigated algorithms it has been

proved that their computational part is accelerated a number of times in O(p).

Keywords: Clustering, Heterogeneous computing, Artificial intelligence, Accelerators, Parallel computation.

1. Introduction
Clustering is an unsupervised learning technique. It deals with finding a structure in a collection of objects. Thus, a

cluster is a sub-collection of objects which are similar between them and are dissimilar to the objects belonging to other

clusters. The main types of clustering are:

 distance-based clustering: the objects belong to the same cluster if they are close according to a given (usually

geometrical) distance; according to [1] the most used are:

o k-Means

o Mean Shift Clustering: is a sliding-window-based algorithm that attempts to find dense areas of data points

o Density-Based Spatial Clustering

o Expectation-Maximization Clustering using Gaussian Mixture Models

o Agglomerative Hierarchical Clustering

 conceptual clustering: objects are grouped according to their match to descriptive concepts.

All these algorithms are iterative. The execution time depends on the actual data provided as input. What can be

accelerated is the execution time for each iteration. This time varies from values in O(n) to values in O(n
3
).

In the second part of the paper the previous six algorithm are described in order to provide insights for defining the

architecture of an accelerating engine. In the next section we propose a MapReduce accelerator and the algorithms are

analyzed in the context offered by this cellular structure. The fourth section compares the performance of our solution with

results already published.

2. Clustering Algorithms
For clustering algorithms, data is stored in the system memory as a sequence of vectors X = {x1, x2, …, xn}, where the

vectors are of the form xi = [ci
1
, ci

2
, …, ci

d
]. Each vector contains the coordinates of a point in a d-dimension space and

sometimes information used to identify each point.

In this section the algorithms are described independent by the way they are implemented, for a mono-core computing

system or for a many-core accelerator. In the next section their parallel implementation will be investigated.

2.1. k-Means Clustering Algorithm (KMC)
 k-Means clustering provides the partition of the set of points represented by X into k sets. The value of k is established

by the user. The algorithm is presenter in Fig. 1.

CIST 103-2

1. Set randomly k d-dimension centers and allocate each point randomly to a center.

2. Compute for each d-dimension point the Euclidean distance to the k centers and

assign each point to the “nearest” center.

3. Compare the new assignments to the previous one

 if (no difference) then stop the process else continue

4. Move the k centers to the means of the newly created groups and goto 2.

Fig. 1: k-Means distance-based algorithm.

The execution time of the main loop  O(n), but the actual time depends on how many iterations are

performed until the centers’ distribution stabilize.

2.2. Mean Shift Clustering Algorithm (MSC)
The efficiency of the k-Means algorithm depends on the value of k and the initial position of the centers. Mean

Shift Clustering algorithm helps us to determine for the input data set the optimal number of centers and their position.

We start with a number of centers uniformly distributed in the d-dimension space and iteratively these centers move

toward the most probable number of centers and their position. The algorithm is presented in Fig. 2.

1. In the d-dimension space, where a set of points are distributed, we begin with sliding d-

dimension window volumes with radius r centered uniformly over the space occupied by the set

of points.

2. The sliding window is shifted at every iteration towards regions of higher density by shifting

the center point to the mean of the points within the window. Thus, the windows will gradually

move towards areas of higher point density until no longer the number of points in the window

increases.

3. The sliding windows will continue shifting according to the mean until there is no direction at

which a shift can accommodate more points inside a kernel.

4. Then multiple sliding windows overlap in few points representing the centers for applying the

k-Means algorithm in one step.

Fig. 2: Mean-shift clustering algorithm.

The execution time of the main loop  O(n), but the actual time depends on how many iterations are performed

until the centers’ distribution stabilize.

2.3. Density-Based Spatial Clustering Algorithm (DBSC)
When the clusters are not distributed radially the algorithm must follow the higher density path. Then, we must

define a radius r for the space in which high density is defined by minPoints. The algorithm is presented in Fig. 3.

1. Start the search for a new cluster with an arbitrary point which is unvisited.

2. Set the selected point as visited. Its neighborhood is identified using a radius r.

3. if within this neighborhood there are at least minPoints:

 then the point and its companions from the neighborhood are added to the current cluster.

4. while in the searched cluster there are unvisited points, select one of them and go to step 2.

5. while there are unvisited points, go to step 1..

Fig. 3: Density-based spatial clustering algorithm.

CIST 103-3

The execution time O(n
2
). The price of the possibility to identify clusters having any kind of shape, not only radially

distributed, is the square time complexity instead of a linear time complexity.

2.4. Expectation-Maximization Clustering Using Gaussian Mixture Models Algorithm (EMC)
The idea of Gaussian Mixture Models is to find the parameters of k Gaussians that best explain our data [2]. We

assume that data are Gaussians and we have to find parameters that maximize the probability of observing these data: we

regard each point as being generated by a mixture of k Gaussians and must compute the probability to belong to each of

them.

1. Select the number of clusters and randomly initialize the Gaussian distribution parameters for

each of them.

2. Compute the probability that each data point belongs to a particular cluster.

3. Based on these probabilities, compute a new set of parameters for the Gaussian distributions

such that we maximize the probabilities of data points within the clusters.

4. Steps 2 and 3 are repeated iteratively until convergence, i.e., the distributions don't change

much from iteration to iteration.

Fig. 4: Expectation-maximization clustering using Gaussian mixture models algorithm.

The execution time of each iteration  O(n).

2.5. Agglomerative Hierarchical Clustering Algorithm (AHC)
The Agglomerative Hierarchical Clustering algorithm considers initially each point in the input data as a single cluster

and then successively merges (or agglomerates) pairs of clusters until all clusters have been merged into a single cluster

that contains all data points. The hierarchical clustering does not require the specification of the number of clusters because

at the end we build a binary tree.

1. We start with each data point as a single cluster.

2. On each iteration a distance metric, that measures the distance between two clusters, is

used to combine two clusters with the smallest linkage into one.

3. Step 2 is repeated until we only have one cluster which contains all data points.

Fig. 5: Agglomerative hierarchical clustering algorithm.

.

The execution time  O(n
3
).

2.6. Conceptual Clustering Algorithm (CC)
Instead of numerical evaluation of the “distance”, now associative mechanisms must be used to evaluate the

“distance” of each point from each center. A numerical evaluation is substituted with a fitting mechanism. Instead of the

Euclidean distance the Hamming distance is considered. Each object has a set of m attributes coded as an m-bit number.

One bit for each attribute. One solution is a hierarchical approach which uses a recursive bi-partitioning spectral clustering

algorithm. The bi-partitioning clustering algorithm is presented in Fig. 6.

1. Generate the similarity matrix S based on the Hamming distance between the objects.

2. Compute the associated Laplacian matrix using the degree matrix D of S.

3. Compute iteratively the eigenvector of the Laplacian matrix in order to emphasize the bi-partition.

Fig. 6: Conceptual clustering algorithm.

.

CIST 103-4

The execution time of each iteration for computing the eigenvector  O(n
2
).

3. Parallel Approach for Clustering
The previously described algorithms are parallelized starting from the fact that they have the following main

specific characteristics:

 a given function is applied-to-all elements of a sequence of data returning a sequence, i.e., a function is

mapped to a sequence of data

 a given associative and commutative function uses as argument all the elements of a sequence returning a

scalar, i.e., a reduction function is applied to the sequence

Fig. 7. Programmable MapReduce accelerator as a linear array of execution units (MAP) loop connected with a controller through a

Reduction function.

These two types of functions are applied under the control of a mono-core controller on sequences of data

represented as vectors mapped on a linear array of cells. Therefore, the hardware necessary for the previously emphasized

functions consists of an accelerator with a linear array of p cells loop connected with a controller through a reduction

network (see Fig. 7) [3] [4] [5]. The Control unit issues in each clock cycle {instruction, value, address},

through a log-depth distribution network, to be executed in each active cell of the linear array. Each cell, celli, consists of

an execution unit and a local data memory, memi, of m scalars. Thus, the memory distributed along the cells is seen as the

m×p matrix M whose element sij is the i-th scalar stored in the memory of the j-th cell.

Along the cells is distributed a Boolean vector, B=[b1,b2,…,bp], used to specify the active cells. Each bj evolves

according to the internal state of the j-the cell and the instruction received from Control. The operations, defined on, the so

called, horizontal vectors Vi = [si1,si2,…,sip] M, for i = 1, 2, …, m, are predicated map operations:

Vi <= OP(Vk,Vq)::= sij <= bj ? OP(skj, sqj) : sij

Vi <= OP(Vk,s)::= sij <= bj ? OP(skj, s) : sij

predicated reduction operations:

s <= redOP(Vi)::= s <= OPpp=1 bj ? sij : NAN

or spatial control operations (used to select the active cells according to a condition):

WHERE(cond)::= bj <= condi ? 1 : 0

for j = 1, 2, …, p, where cond is a Boolean vector, s is a scalar received by the controller Control.

To minimize the overhead introduced by “von Neumann bottleneck”, the data transfer between the array of cells and

Memory is transparent to the computational process.

In the following is detailed the k-Means implementation in order to exemplify the use of our proposal. The other

algorithms will be discussed related to this algorithm.

CIST 103-5

3.1. k-Means Clustering Implementation
In the external memory, Memory (see Fig. 7), there is stored initially a sequence of n d-component vectors

containing the coordinates of the n points submitted to the clustering algorithm. The algorithm returns a vector K

containing indexes associated to the k clusters, so each point i is associated to one of the clusters, and d vectors, one for

each coordinate of the clusters identified by the algorithm. Let us take, for example, the pseudocode for d = 3, n ≤ p

(see Fig. 8).

Initial data in Memory

 S = [[x1,y1,z1],…,[xn,yn,zn]] // sequence of coordinate vectors in a 3D space

Final result in Memory

 K = [k1,… kn] // sequence of clusters’ indexes associated to the points

x = [x
1
,…,x

k
] // x coordinates of the centers of the k cluster

 y = [y
1
,…,y

k
] // y coordinates of the centers of the k cluster

 z = [z
1
,…,z

k
] // z coordinates of the centers of the k cluster

// Initialization

 K’<= [k1,…,kn] // K’is randomly initialized in MAP array with ki[1,d], for i = 1,…,n
x <= [x

1
,…,x

k
] // x is randomly initialized in Controller with the x

j
 coordinates of the k centers

 y <= [y
1
,…,y

k
] // y is randomly initialized in Controller with the y

j
 coordinates of the k centers

 z <= [z
1
,…,z

k
] // z is randomly initialized in Controller with the z

j
 coordinates of the k centers

 D <= [d1,…,dn] // is initialized with di = “”, for i = 1,…,n; “each point is far away from any center”
K <= [0,…,0]

// Data transfer from Memory to MAP array (in time  O(n))

 X <= [[x1,y1,z1],…,[xn/3,yn/3,zn/3]]

 Y <= [[xn/3+1,yn/3+1,zn/3+1],…, [x2×n/3,y2×n/3,z2×n/3]]

 Z <= [[x2×n/3+1,y2×n/3+1,z2×n/3+1],…, [x3×n/3,y3×n/3,z3×n/3]]

// Computing the final values for K, x, y, z

 transpose(X,Y,Z;3×3) // the n/3 matrices stored in the vectors X,Y,Z are transposed (in time  O(d2))
 // X = [x1,…,xn]: vector of the coordinates x of each point

// Y = [y1,…,yn]: vector of the coordinates y of each point

// Z = [z1,…,zn]: vector of the coordinates z of each point

WHILE (K  K’) // test the end of process (in time  O(log p))
 K <= K’

FOR (i = 1; i ≤ k; i = i+1) // update K’(in time  O(k×d))
 D’<= (X-x

i
)
2

 D’<= D’+(Y-y
i
)
2

 D’<= D’+(Z-z
i
)
2

 where (D’< D)

 D <= D’

 K’ <= I

 FOR (i = 1; i ≤ k; i = i+1) // update x, y, z (in time  O(k×d + log p) ≈ O(k×d))
 WHERE (K’ = i)

 x
i
 <= redAdd(X)/redAdd(B)

 y
i
 <= redAdd(Y)/redAdd(B)

 z
i
 <= redAdd(Z)/redAdd(B)

// Transfer the result from MAP to Memory (in time  O(n))
 Memory <= K

 Memory <= [x,y,z]

Fig. 8: k-Means clustering implementation for d = 3, n ≤ p

.

The execution time for this clustering algorithm depends on the actual distribution of the input data, S. Therefore, only

the acceleration provided by the while loop can be evaluated, and compared with other implementations, because how

many times the loop is executed cannot be taken into account. The mono-core execution time for this loop is ≈ 40×k×d×n

clock cycles, while the execution time for the parallel system we propose is ≈ 20×k×d clock cycles.

The acceleration of 2n× provided by our approach is supra-linear because, besides the parallelism introduced at the level of

MAP array, there is a parallelism introduced by the parallelism between MAP, Control and Reduce.

In a mono-core execution, for example, the control and the computation are performed by the same engine, while in our

accelerator most of computation is performed in MAP and the control is performed in parallel by the Control module.

CIST 103-6

Unfortunately, the overall acceleration of the clustering computation must take into account also the transfer time

of data between Memory and MAP which is in O(n). If the number of executions of the while loop is big, then the

transfer time has a small weight in the total time, and the value of the acceleration is dominated by computation. But,

if the number of executions of the while loop is small, then the execution time could be dominated by the transfer

time. Fortunately, we use this algorithm only when the computation is very intense, when the loop is executed many

times and the overall execution time is dominated by computation.

3.2. Mean Shift Clustering Implementation
In contrast to k-Means clustering, there is no need to select the number k of clusters. The algorithm is conceived to

automatically discover the value of k. That’s an important advantage. The drawback is that the selection of the window

radius r can be non-trivial. The mechanisms involved in running this algorithm on our proposed accelerator are similar

with those used for k-Means. The main difference is given by the biggest number of initial clusters and by the way we

associate a point to a cluster which is based on the radius r. Therefore, the acceleration and the limitation introduced by

data transfer are similar with those of the implementation of the k-Means algorithm.

3.3. Density-Based Spatial Clustering Implementation
Density-Based algorithm is similar with k-Means and Mean Shift clustering, but has some advantages. Does not

require a pre-determined number of clusters. The algorithm determines the outlier points and ignores them as noise,

rather than including them in the most probable cluster. And, it can identify arbitrarily sized and shaped clusters quite

well.

Because for each point the size of the neighborhood must be evaluated the latency of the Reduction network limits

the acceleration to a value in O(p/log p). Future work on algorithm implementation must be done to “remove” the

logarithm.

3.4. Expectation-Maximization Clustering Using Gaussian Mixture Models Implementation

Step 2 is computed in a pure SIMD mode in constant time. Because step 3 computes, using reduction the sum of

probabilities associated to each Gaussian, the execution time is (constant + log p). Each iteration (steps 2 and 3) is

executed in (constant + log p) time. Because in the foreseeable future the silicon technology will offer us the

possibility to implement MAP with log p no bigger than 20, we can approximate (constant + log p) with constant.

Therefore, the acceleration provided for the computational part of this algorithm  O(p).

The “von Neumann bottleneck” effect on the data transfer remains and affects the overall performance depending on the

number of iterations requested by the actual data input.

3.5. Agglomerative Hierarchical Clustering Implementation

Each of the n point comes, besides the coordinates, with a name, as follows:
[name, coordinate1, …, coordinateD]

The result is a number of n-1 clusters each characterized by
[name, leftName, rightName, coordinate1, …, coordinateD]

For the same reasons as for the previous algorithm, the acceleration of the computation by our approach  O(p).

3.6. Conceptual Clustering Implementation

For n ≤ p, the n×n similarity matrix and the associated Laplacian are computed by a system with our accelerator

in time belonging to O(n). The eigenvector is computed iteratively, each iteration in time  O(n), because the

hardware is featured with a mechanism to avoid, for this operation and similar ones, the log latency introduced by the

reduction network. Therefore, the acceleration belongs to O(p).

CIST 103-7

3.7. Conclusions for the Clustering Implementation on MapReduce Architecture

The performance improvement provided by our MapReduce architecture depends of the relation between the time

complexity of the data transfer from/to Memory (which is not improved using our approach because the “von Neumann

Bottleneck” does not forgive anyone) and the time complexity of the computation. The time associated for data transfer

belongs, for all the algorithms and all the current solutions – our included –, to O(n).

Therefore, we can emphasize two situations:

1. For the iterative algorithms with the mono-core execution time of each iteration in O(n) – KMC, MSC, EMC – the

overall acceleration depends on the number of iterations performed until the convergence is obtained. If the number is

big (in the case when the parallel approach makes sense), then the transfer time has a small weight and the acceleration

is in O(p), else the efficiency of using the accelerator is diminished.

2. For DBSC and CC, with the mono-core execution time in O(n
2
), and the AHC, with the mono-core execution time in

O(n
3
), the data transfer time does not affect the magnitude order of acceleration which  O(p).

4. State of the Art
To provide a meaningful comparison concerning the acceleration of the computation, let us take algorithms which are

not I/O bounded: AHC and CC.

The AHC algorithm, in our accelerator, computes the hierarchical clustering in time  O(n
2
) with a n-cell accelerator

with an acceleration belonging to O(p). In [6] hierarchical clustering is accelerated 11.5x to 13.2x, depending on the

number of points, using as accelerator GPUs with thousands of cores. The reference is the CPU time provided by an engine

with tenths of cores. We expect to have an acceleration in the range of 100x. Where is lost around 10x boost? The answer

is provided in [7], where concerning the reduction function is claimed: “is much more trickier to parallelize since the

centroid computations depend on all of the other data points in its cluster”. Indeed, the expected performance improvement

from 100x cells is only in the range of 10x because the overhead introduced by the reduction addition in a GPU is in the

range of log2 from thousands, i.e., around 10x.

The core of the CC algorithm performs matrix-vector multiplications. In [8] are published benchmarks showing, for

linear algebra computations, a mean value of acceleration ~10× (maximum 36×) for a GPU compared with a CPU. Again,

the acceleration is far from the ratio between the execution units involved in comparison. (More detailed criticisms about

the current parallel approach see in [9].)

5. Our Implementation
The structure of the MapReduce accelerator was implemented in few versions. The last one was implemented in 65nm

and it provided: >120 GOPS/Watt and >6.25 GOPS/mm
2
 (GOPS stands for 16-bit Giga Integer Operations per Second).

The last evaluation for 28 nm technology provided, for 2048 32-bit cells, running at fclock = 1GHz, with 4096 KB of

memory each, implemented on 9.2 × 9.2 mm
2
, using standard cell 28nm library, 2 TOPS or 0.83 TFLOPS powered at ~15

Watt. These figures translate in more than 50 GFLOPS/Watt.

NVidia’s Kepler architecture implemented in 28nm provides less than 10 GFLOPS/Watt [10].

The area and energy used in our approach is improved:

(1) because the floating-point operations are implemented as a sequence of integer operations (on an average of 8

cycle per float operation), and

(2) because the predictability of the data flow in intense computation is very high, instead of a cache-based

memory hierarchy we adopted a buffer-based memory hierarchy.

The MapReduce accelerator can be integrated in various ways in a heterogeneous computing system. One way is to

use the FPGA approach in pseudo-reconfigurable computing systems. “Pseudo” because the accelerator is programmable

and only the program must be reloaded, while the reconfigurability refers to a parametrized synthesizable core. This

approach can be used in embedded computation or in FPGA services offered in cloud.

Another approach is to use the accelerator as an IP integrated on the same chip with a general-purpose CPU.

CIST 103-8

In any form of the actual implementation, the accelerator must be integrated in the heterogeneous system as a hardware

kernel library of a currently used library (for example Eigen). This approach will allow the development of the library in a

high- level language using the kernel library, while the kernel library remains to be optimized in assembly language.

6. Conclusion

The proposed MapReduce architecture (with p cells) provides in most of the cases a robust O(p) acceleration with

a structure having the size in O(p). The energy consumed is around 5x less than of-the-shelf solutions provided by the

use of GPUs as GPGPUs. The structural and architectural features of our proposal allow a performance O(log p)-times

higher than the currently used accelerators due to the main novelty of our approach:

 we provide a fully covered hardware support for reduction functions.

 in most of the cases, using a special hardware feature and an appropriate algorithmic approach we avoid the latency

introduced by the log-depth reduction network

 data transfer between the computational array MAP and the external memory Memory (see Figure 1) is performed

transparent with the computation, allowing a partial reduction of the I/O bounding effect.

The integration in heterogeneous systems is efficiently done using the intermediary step of a kernel library

optimized in assembly language.

The remaining weakness, only for KMC, MSC, EMC parallel algorithms, is related with the data transfer between

Memory and MAP. Maybe future technological improvements will allow to accommodate on the silicon chip more

distributed memory, thus avoiding partially the data movement between the MAP section and the external Memory.

Acknowledgements
The authors got support from the technical contributors to the development of the ConnexArray

TM
 technology:

Emanuele Altieri, Frank Ho, Bogdan Mîțu, Marius Stoian, Dominique Thiébaut, Tom Thomson, Dan Tomescu.

References
[1] G. Seif, The 5 Clustering Algorithms Data Scientist Need to Know,

 https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
[2] M. Deshpande, Clustering with Gaussian Mixture Models, 2017,

 https://pythonmachinelearning.pro/clustering-with-gaussian-mixture-models

[3] G. Ștefan, A. Sheel, B. Mîțu, T. Thomson, D. Tomescu, “The CA1024: A Fully Programmable System-On-Chip for

 Cost-Effective HDTV Media Processing”, in Hot Chips: A Symposium on High Performance Chips, Memorial

 Auditorium, Stanford University, August 20 to 22, 2006. https://youtu.be/HMLT4EpKBAw at time 35:00.

[4] M. Malița, G. Ștefan, D. Thiébaut, ”Not Multi-, but Many-Core: Designing Integral Parallel Architectures for

 Embedded Computation”, in ACM SIGARCH Computer Architecture News, Vol. 35 , no. 5, Dec. 2007, pp. 32-38.

[5] G. Ștefan, M. Malița, “Can one-chip parallel computing be liberated from ad hoc solutions? A computation model-

 based approach and its implementation”, in 18th Inter. Conf. on Circuits, Systems, Communications and Computers,

 2014, pp. 582--597.

[6] G. Sissons, GPU Accelerated R in the Cloud with Teraproc Cluster-as a Service, 2015.

 https://devblogs.nvidia.com/gpu-accelerated-r-cloud-teraproc-cluster-service/

[7] A. Minnaar, A CUDA Implementation of the K-Means Clustering Algorithm, 2019.

 http://alexminnaar.com/2019/03/05/cuda-kmeans.html

[8] S. Tomov, R. Nath, H. Ltaief, J. Dongarra, “Dense linear algebra solvers for multicore with GPU accelerators”, in

 24th IEEE International Symposium on Parallel and Distributed Processing, Atlanta, Georgia, 2010.

[9] J. Vegh, “The Need for Modern Computing Paradigm: Science Applied to Computing”, in 6
th
 Annual Conference on

 Computational Science & Computational Intelligence, Dec. 5-9 2019, Las Vegas, Nevada.

[10] H. Mujtaba, Nvidia Pascal GP100 GPU Expected to Feature 12 TFLOPs of Single Precision Compute, 4 TFLOPs of

 Double Precision Compute Performance, 2016.

https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://pythonmachinelearning.pro/clustering-with-gaussian-mixture-models
https://youtu.be/HMLT4EpKBAw
https://devblogs.nvidia.com/gpu-accelerated-r-cloud-teraproc-cluster-service/
http://alexminnaar.com/2019/03/05/cuda-kmeans.html
https://wccftech.com/author/hms/

