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Abstract - In this paper, we investigate predictive models to detect the spread of hate speech on Twitter based on diffusion patterns. 

We experiment with a dataset of 10,000 tweets manually labelled as hate speech or not and show that classification based solely on the 

sharing graph yields strong F1 scores for our task and high hate speech detection precision. We also highlight the vulnerability of 

existing textual hate speech detection methods to adversarial attacks and demonstrate that while our methods do not outperform state-

of-the-art text models, graph-based models provide robust detection mechanisms and are able to detect instances of hate speech that 

missed by text classifiers. We find that graph convolutional networks produce the strongest hate speech F1 score of 0.58 and that kernel 

methods offer strong predictive potential. Finally, we also consider the effects of automated bots in the diffusion of hate speech content 

and conclude that their sharing behavior plays an insignificant role in our experiments. 
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1. Introduction 
Online social networks have connected people across the world and made sharing information easier than ever, but 

rising reports of active hate groups and online hate speech content trouble observers. The anonymity, immediacy, and 

global reach of online social networks make the platforms potentially attractive broadcast mediums for hate groups. 

Several large social networking platforms have identified the problem, but their responses have not solved the issue. In 

2018, Twitter representatives suggested that the company’s automated detection systems used machine learning techniques 

to identify over 40% of content that requires moderation but admitted that finding all hate speech using automated 

detection mechanisms is prohibitively difficult [1], [2]. 

The classification performance of automated hate speech detection systems has improved dramatically in recent years, 

but three issues still plague existing methods. Hate speech content accounts for a tiny fraction of all shared content, leading 

to a highly imbalanced classification problem. The second issue is that the subjectivity of defining hate speech makes 

labelling data for an automated detection system even more difficult. There is no consensus definition of hate speech, and 

the context becomes critical in many scenarios. Finally, current text-based detection methods can be easily fooled by 

adversarial attacks. Previous research has shown that trivial manipulations of messages, such as adding positive sentiment 

words or small typos in hateful terms, can trick systems built to detect toxic language [3], [4]. Current systems also have 

poor detection of coded language in content, and the ability of simple modifications to impair the abilities of current 

detection systems significantly undermines the recent performance gains of state-of-the-art systems. Our research is 

motivated by a desire to uncover new methods of hate speech detection to address these existing shortcomings. Previous 

research has analyzed online users who frequently post hate speech content, but few studies to our knowledge analyze the 

diffusion of hate speech online and whether diffusion patterns can offer predictive detection features. 

Our contributions are: (1) we investigate models to detect the spread of hate speech tweets on Twitter and show that 

graph convolutional networks yield robust F1 scores for our imbalanced classification task and high hate speech detection 

precision. (2) We reproduce existing results showing how adversarial attacks can weaken text detection models for hate 

speech detection and demonstrate how our methods, while not outperforming state-of-the-art models, are robust against 

adversarial attacks and hard to manipulate. (3) We consider the role of automated accounts or “bots” in the spread of hate 

speech and find that automated accounts play an insignificant role in the spread of hate speech in our experimental dataset. 
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2. Related Work 
Hate speech detection systems have relied primarily on natural language processing, and recent deep learning research 

has produced the current state-of-the-art detection capabilities. Earlier research demonstrated the effectiveness of n-gram 

and bag-of-words techniques. Specifically, Davidson, et al. show strong classification performance with an F1 score of 

0.80 on a multi-class hate speech classification task using word-level n-gram features [5]. Deep learning models, like 

recurrent neural networks, have been shown to detect hate speech with high levels of precision, and Badjatiya et al. 

produce a classifier with 0.93 precision and 0.93 recall overall on a dataset of 16,000 labelled tweets using long short-term 

memory (LSTM) networks with random embeddings and gradient-boosted decision trees [6]. But other researchers have 

undermined the stated gains of text-based classifiers by demonstrating that simple adversarial attacks can fool them. 

Grondahl, et al. show that ¨ appending the word “love” to a comment caused hate speech detection precision to drop by 

50% for the detection models from Davidson et al., Badjatiya et al., and Google’s Perspective API which is used to detect 

toxic language online [7]. 

Some research studies have analyzed patterns in the types of users associated with hate speech content, but they did 

not look at the content’s spread. Ribiero, et al. analyze users who create or share hate speech content on Twitter. The 

authors find that accounts posting hate speech tweets tend to post more frequently than other accounts and also have strong 

ties in their 1-neighborhood, suggesting strong homophily among that group of accounts [4]. Both Zhong et al. and 

Waseem and Hovy consider the effect of the number of replies, the replies from followers, and the total number of posts by 

a user to detect hate speech, but the two studies produce opposite results. Zhong finds no correlation between posting 

activity and hateful content, while Waseem and Hovy find a strong correlation [8]. 

To our knowledge, no extensive research has attempted to analyze the spread of hate speech diffusion on Twitter. 

Previous research has found that information cascades online carrying negative sentiments fade far more rapidly than their 

positive sentiment counterparts, and Romero, Meeder, and Kleinberg analyze how diffusion cascades on Twitter differed 

by topic, such as sharing cascades about politics, sports, or movies. [10] [9]. The 2018 research of Vosoughi, Roy, Aral 

offers a similar investigation of the spread of true and false rumors online. The authors analyze the diffusion cascades of 

verified true and false news stories on Twitter from 2006 through 2017 and find that false rumors spread faster and more 

broadly than their truthful counterparts. The authors also find that automated accounts play a limited role in the spread of 

false news stories [11]. 

 

3. Dataset 
We use an existing dataset of labelled hate speech tweets and data from Twitter’s public API to collection information 

about sharing patterns. The tweet dataset contains 99,799 English tweets created between March 30, 2017 and April 9, 

2017 and was compiled by Founta, et al. [12]. The authors crowdsource annotations from CrowdFlower to label each tweet 

as either hateful, abusive, spam, or normal. They use the following definitions for each label:  

• Hate Speech (Hateful): Language used to express hatred towards a targeted individual or group, or is intended to be 

derogatory, to humiliate, or to insult the members of the group, on the basis of attributes such as race, religion, 

ethnic origin, sexual orientation, disability, or gender. 

• Abusive Language (Abusive): Any strongly impolite, rude or hurtful language using profanity, that can show a 

debasement of someone or something, or show intense emotion. 

• Spam: Posts consisted of related or unrelated advertising / marketing, selling products of adult nature, linking to 

malicious websites, phishing attempts and other kinds of unwanted information, usually executed repeatedly. 

• Normal: all tweets that do not fall in any of the prior categories. [12] 

Each tweet in the dataset has annotations from five labelers and require a majority label for the tweet to be included in the 

dataset. The original dataset contains 53,790 (54%) normal tweets, 14,024 (14%) spam tweets, 27,037 (27%) abusive 

tweets, and 4,948 (5%) hateful tweets. 

Next, we gather each tweet’s associated diffusion network through Twitter’s public API. We use a process for 

recreating true retweet paths using the limited information from the Twitter API called time-inferred diffusion, described 

initially by Goel, et al. and used by Vosoughi, Roy, Aral in their research on the spread of true and false news on Twitter 
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[13]. The Twitter API does not specify the direct retweet path, meaning all retweets in the API response appear to reshare 

the original tweet even if they shared the content through a later retweet, so we must use this diffusion inference technique 

to infer the true sharing patterns using follower relationships and retweet timestamps. 

We restrict our gathering to tweets with ten or more retweets, because smaller graphs will not contain enough 

information for meaningful predictions. At the time we access the Twitter API, 42,872 tweets are unavailable either 

because users deleted the tweet or Twitter banned the account or tweet. The follower relationships of users who have 

deleted their accounts are also not available, and a small fraction (2%) of accounts in the dataset are deleted. All of these 

weaken our ability to infer the true retweet graph, but we are still able to gather information for 86% of all retweets of the 

tweets in the dataset, according to tweet metadata. Some tweets in the original dataset are retweets, and we remove all 

retweets so that only original tweets are classified.  

Only 6,924 available tweets from the original dataset meet our minimum retweet requirements, and there are 2,154 

“abusive” tweets, 967 “hateful” tweets, and 3,203 “normal” tweets. There are larger proportions of abusive and hateful 

content than the original dataset, and the cause is a boosted abusive and hateful tweet sample of 20,000 tweets from the 

original dataset. The authors include 20,000 tweets in the dataset after filtering their sample using sentiment analysis and 

the presence of hate speech terms to gather tweets, and the tweets from this sample tend to be more accessible and more 

popular than the rest of the dataset [12]. To counteract this, we resample using the opposite filters as the dataset’s boosted 

hate speech sample to gather more “normal” tweets to counteract this imbalance. We gather tweets from the same period in 

April 2017 and filter by tweets that have high positive sentiment scores and that do not contain any of the hate speech 

terms the authors require in their original boosted sampling process. 

In the end, our experimental dataset includes 10,074 tweets. 2,154 (21.4%) tweets are labeled as abusive, 967 (9.6%) 

are labeled as hateful, and 6,953 (69.2%) are labeled as neither (i.e. normal). For our binary classification experiments, we 

combine hateful and abusive into a “toxic” class: 

 
Table 1: Dataset Class Labels. 

  

Tweet Class Number 

Normal 6,953 

Toxic 3,121 

Total 10,074 

  

Given our minimum size constraints, the sizes for most of the eligible sharing graphs cluster towards the minimum 

size requirement, but several sharing graphs have more than 500 nodes (retweets) and more than 10 layers of depth. We 

have a higher proportion of normal tweets and slightly higher number of hateful tweets than the original dataset. 

 

4. Experiments 
We conduct three sets of hate speech detection experiments on our dataset: classifying retweet networks, classifying 

tweet texts, and classifying tweet text while applying adversarial attacks. All experiments are run as binary classification 

tasks between normal tweets as one class and “toxic” tweets, the union of abusive and hateful tweets, as the other class. In 

each experiment, we optimize for overall F1 score. For each task, we report the precision, recall, and F1 score for each 

class. The stated results are aggregated over the same ten 90-10 test-train splits, and we use GridSearchCV for model 

hyperparameter tuning where appropriate. 

For our diffusion network classification, we test regression methods, kernel-based methods, and graph convolution 

network models. We run logistic regression with a set of hand-crafted features based on structural properties of the retweet 

graphs, such as the graph depth, cascade duration, node degree distribution, and assortativity coefficient, using 50 features 

in total to make predictions. Next, we include a series of graph kernel-based learning models. We use the open-source 

GraKel package for implementations of kernel functions. We report results for our SVM classification model using a 

support vector machine classifier with a precomputed Weisfeiler-Lehman kernel. (We also considered a graph shortest-
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paths and random walk kernels, but after their poor performance, we exclude those models from the results.) We test the 

deep graph kernels proposed in Yanardag, 2015 as well. The deep graph kernel uses a neural language model to learn latent 

representations of the sub-structures in the graphs, using labeling from the Weisfeiler-Lehman kernel. The last graph-based 

classification model we test is a graph convolutional network (GCN). GCNs are semi-supervised approach to graph 

classification, reaching state-of-the-art performance on a number of benchmark graph classification tasks. These are 

extensions of neural networks applied to capture information specific to graph data structures. We perform training in 

batches of size 64 for the GCNs with at most 100 epochs. 

We compare our results with an implementation of the logistic regression model from Davidson et al. using word-

based n-grams and other text-features (readability metrics, tweet length, etc.). We also implement the methods from 

Malmasi, Zampieri where the authors use SVMs with different word and character-level skip-gram features. We report 

results from the strongest classifier from their set, specifically using word-level skip-gram features as model input. We also 

compare our methods against state-of-the-art deep learning models. We investigate two neural network architectures for 

the task, specifically convolutional neural networks (CNNs) and long short-term memory networks (LSTMs), as described 

by Badjativa, et al. The authors experiment with both convolution and recurrent neural net architectures for hate speech 

detection. They find that the recurrent LSTMs have the strongest performance in detection hate speech [6]. As part of our 

experiments to show the effects of adversarial attacks on existing hate speech detection options, we also implement a few 

simple adversarial attacks from Grondahl, et al. Specifically we include four adversarial attacks: inserting typos, removing 

whitespace, and appending the word “love” to the end of hate speech tweets. 

 

5. Results 
Table 1 includes results for our graph-based methods for the hate speech classification task. Our diffusion 

classification methods achieve varying levels of success. 

 
Table 2: Diffusion Graph Classification Results. 

 

Method Class Precision Recall F1 

Logistic 

Regression 

Normal 0.91 0.69 0.78 

Hateful 0.37 0.53 0.33 

SVM, 

WL Kernel 

Normal 0.80 1.00 0.89 

Hateful 0.33 0.12 0.20 

SVM, 

Deep WL Kernel 

Normal 0.82 0.18 0.26 

Hateful 0.39 0.18 0.26 

Graph 

Convolutional Network 

Normal 0.86 0.93 0.90 

Hateful 0.55 0.34 0.42 

 

The graph convolution network produces the best F1 score of 0.40 for the hate speech class and the highest weighted 

accuracy of our diffusion graph classification methods. Our kernel-based methods reliably detect normal content but have 

severe difficulty detection hate speech, producing very low recall scores. Our baseline logistic regression produces the 

highest hate speech recall at 0.53, but it has a precision of only 0.37. In general, the detection methods can classify the 

majority class of normal tweets well but struggle to separate the retweet networks for abusive and hateful tweets. Another 

finding is that graph classification accuracy varies with graph size. Our models like the graph convolution network are able 

to classify graphs with more nodes and those with higher max depths much more accurately. Larger graphs offer more 

information to make a prediction, and we also find that larger networks in our dataset are disproportionately those of 

normal content. The diffusion networks of hate speech tweets tend to propagate widely and quickly at first but do not 

spread as deeply as other content. 

Next, we compare existing textual methods on the dataset. Table 2 shows the results of existing text classification 

implementations on tweets from the dataset. 
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Table 3: Source Tweet Text Classification Results. 

 

Method Class Precision Recall F1 

Logistic 

Regression 

Normal 0.83 0.97 0.89 

Hateful 0.68 0.46 0.56 

SVM, 

n-grams 

Normal 0.83 0.93 0.87 

Hateful 0.60 0.54 0.56 

LSTM CNN Normal 0.88 0.98 0.93 

Hateful 0.74 0.62 0.67 

Bi-directional 

LSTM CNN 

Normal 0.87 0.97 0.92 

Hateful 0.81 0.54 0.65 

 

The LSTM classifier has the best performance of our implemented detection methods. It produces the highest F1 

scores for all classes and highest overall accuracy, and the bi-directional LSTM CNN model follows closely in 

performance. The classifiers using n-gram features do not match the performance of the deep learning architectures but still 

produce higher F1 scores overall and for the hate speech class than our diffusion network classifiers. While these models 

outperform our sharing network detection techniques, they still exhibit performance significantly below the stated 

performance on their original datasets. We attempt to tune hyperparameters to optimize performance, specifically F1 score, 

but the results suggest either there are peculiarities in our dataset that make classification especially difficult or the initial 

results are over-trained on their original datasets. In total, there are 116 hateful tweets (12% of total) that were detected by 

our graph convolution network model that are not detected by any of the text-based methods. One major benefit of our 

diffusion-based approach is that we are able to pick out instances of hate speech that do not use obviously derogatory terms 

unlike the text-based classifiers. 

The convolutional neural networks provide the best classification performances of the implemented text classifiers. 

They exhibit slight improvements in classifying normal tweets but show major improvements classifying the text of toxic 

messages. Some of the text classifiers exhibit F1 scores below our graph convolution network model after applying 

adversarial attacks. The more advanced classifiers using pretrained embeddings have their performance suffer significantly.  

 
Table 4: Toxic Class F1 Scores with Adversarial Attacks. 

 

Classifier Original F1 Typos F1 Whitespace F1 Love F1 

Logistic Regression 0.56 0.35 0.36 0.39 

SVM, n-grams 0.56 0.33 0.34 0.43 

LSTM 0.67 0.47 0.52 0.43 

Bi-directional LSTM CNN 0.65 0.51 0.49 0.39 

 

The simple addition of the word “love” at the end of each tweet is the most effective adversarial attack for those 

models, and the n-grams model has the largest performance loss when typos are added or whitespace is removed. Certain 

examples of toxic language were misclassified by all text classifiers after adversarial attacks by adding “love” including the 

following: 

 “you, or a relative is a pig. That’s why I’m telling you to delete your account. You’re retarded love” 

 “I ain’t never had soo much anger for just one person. Like I just wanna beat yo ass bro love” 

 “Imagine giving an American cop a Pepsi at a demonstration! He would shoot you in the face and tip foaming 

soda over your twitching black corpse love” 
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Finally, we also consider the role of automated bots in our experimental results. Previous studies have considered the 

role of bots on Twitter and their role in spreading divisive content. We pass each source tweet in our dataset through 

IUNI’s Botometer tool for automated Twitter bot detection. The tool provides a metric called “Complete Automation 

Probability” which is the probability that the account and its postings are entirely automated [16]. Few accounts in the 

dataset have high CAP scores, and only 94 have CAP scores over 0.5. This suggests that the vast majority of accounts are 

authentic users and that bots are playing a very limited role in creating and spreading hate speech online. We also find no 

significant difference in the presence of bots across labels. These results align with the findings from Vosoughi who found 

that bots played little role in the spread of fake news online [11]. 

 

 
Fig. 1: Histogram of the distribution of Complete Automation Probability 

(CAP) values for tweets in the dataset. CAP values are in the range [0, 1]. 

 

5. Conclusion 
We present novel methods for hate speech detection using the diffusion of tweets as features for classification. Our 

detection models are more robust than text classifiers which are susceptible to simple adversarial attacks, and our methods 

can detect a subset of hate speech missed by state-of-the-art text classifiers. Our study presents a new avenue of hate 

speech detection to explore, and there are several interesting implications. First, the dataset for this task is vital. We used 

an existing dataset to suit our needs but sampling specifically to produce a dataset of retweet networks could avoid the 

pitfalls introduced by our data collection methods. Future work should also focus on applications of advanced graph-based 

machine learning techniques. New graph-based classification techniques may provide models with better performance than 

our experimental methods. Also, in our experiments we assume that the adversarial attacks come from a single actor 

producing adversarial attacks against our diffusion-based detection difficult. Future robustness experiments should 

consider the effects of a coordinated group attacks that could change the sharing patterns.  

Examining our methods using other datasets could demonstrate further robustness. For instance, our methods are 

language agnostic and therefore should demonstrate similar results on non-English datasets. Exploring differences in the 

spread of hate speech contents among different countries and communities could provide for better automated detection 

systems and behavioral insights into communities. Likewise, we do not analyze the specific accounts associated with hate 

speech diffusion. Our results show that hate speech tweets tend to be shared rapidly but not propagate broadly, suggesting 

that perhaps the hateful content remains constrained within an insular community. Investigating community dynamics and 

communication patterns of hate groups and their followers could provide more features for detection. 
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