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Abstract - We introduce a conceptual learning model of the optimal crawl swimmers' arm angle for the first time. We 

utilize a closed-loop control model and a neural network to develop this model. The presented model helps the professional 

swimmers to find their best possible arm’s angle considering their characteristics. The developed model can also be used to 

predict and optimize professional swimmers’ most important factor (arm angle) that influence their result in crawl swimming 

competitions. 
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1. Introduction 
The analysis of swimming movements is of particular importance in professional swimming competition as a 

fraction of second is decisive for swimmers. By using neuromuscular control and neural network, we get a more 

accurate learning model for swimmers. In this article, we take a positive step towards learning models for 

swimmers and take conceptual criteria instead of sensory criteria for swimmer instructors. Swimming instructors 

require a method for converting descriptive criteria to numerical criteria to evaluate swimmers at different times. 

We also show a homomorphic neurological and learning control model to formulate swimmers’ hand movements. 

 

2. Literature Review 
The modeling procedures are divided into three main categories: 1) homomorphic or analytical method 2) 

Empirical method; and 3) Hybrid method. In the homomorphic or analytical method, the relationships between 

the components and their values are known. The second method is repetitive where information about the 

relationships and components of the system is unknown or we do not want to use them. The third method is a 

combination of the two methods above. In this way, we do not have complete information about the entire system, 

but we have some information about its structure. Mathematical modeling of the physiological system is usually 

composed of differential equations for describing the dynamics of the system. Using differential equations and 

simulating them with a computer requires numerical estimates of the parameters and the initial values of the 

variables. Many physiological models are based on physical laws, and they aim to obtain models that reflect the 

model's behavioral and qualitative issues. These physiological models are derived using advanced mathematics 

where the model parameters are estimated based on empirical and experimental measurements. These models 

require a computer and numerical analysis software for simulation purposes [1]. 
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Hill’s Model: The total force of a live muscle is divided into two active and passive sections. The active part is 

the result of muscle contraction and the inactive portion is due to the viscoelastic properties. Hill’s muscle model 

consists of three parts including a contraction component, elastic part, and elastic series. This is one of the most 

famous models that explain the vibrating behavior and force produced in the muscles. The arrangement of the Hill 

model components is illustrated in the following figure. 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Components of Hill’s Model. 

 

Hill's model is a mathematical and phenomenological model where the contraction component is considered 

as the action of actin and myosin in the formation of transverse bridges and the production of contractile force. 

The parallel elastic component represents the behavior of the fascia and other connective tissues that surround the 

contractions, and the elastic component of the series represents the behavioral tendencies of the tendons and 

myofilaments. Research has shown that the force produced in the muscle in the isometric condition is more than 

the force produced at shortening. The weakening mechanism of the transverse bridges along with muscle 

contraction as well as the viscosity of the muscle are the reasons for this. Accordingly, the contraction component 

in the Hill model consists of a damper (b) and an appropriate function (A) for expressing muscle contraction. [2] 

KAWATO's Model: pointed out that the feedback-error-learning approach can be demonstrated 

mathematically using a Newtonian approach to functional space. In advanced mammals, like humans, learning 

under control is the most important part of the learning center. In almost all cases, the trainer cannot directly show 

the correct driving instruction to the trainer but can show the correct direction of movement. Consider the neural 

networks that receive the desired motor pattern. The path received by various sensory systems is measured and 

compared with the desired motor pattern (our educational signal is our monitoring signal). If the trainer can show 

the difference between the real-life steering wheel and the actual driving command, different regulatory 

instructional rules can be used to teach the control networks. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Direct Reverse Modeling. 
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The controlled object receives the torque input τ (t) and delivers the x (t) path as output. The inverse model for 

input and output direction in a controlled object is shown in Figure 2. This means taking the path as an input and 

delivering torque output. The error signal in Equation (1) is the difference between the actual torque and the 

estimated torque. 
 

 S (t) = 𝜏(𝑡) − 𝜏i (𝑡)         (1) 
 

This approach is known as a reverse direct inverse model. Figure 3 illustrates the feedback training approach. 
 

 

 

 

 

 

 

 

 

 

 

Fig. 3: feedback error learning. 

 

The total torque τ (t) enters the controlled element of the sum of the feedback torque τ (t)and the torque (  ) 

obtained in the inverse model [3]. The reciprocal model receives the path and monitors the feedback torque (  )for 

the error signal. It is expected that the feedback signal, as the training continues, will go to zero. We refer to this 

process as a feedback error. 

Comparative control of reference model: Model Adaptive Systems - Reference (MRAS) is one of the most 

important adaptive controllers. This system can be considered as a comparative servo system, in which the 

optimal performance is expressed in terms of the reference model that gives the command signal a desirable 

response. The block diagram of this system is shown in Figure 4. The system has common feedback, consisting of 

a process and a controller, and another loop that changes the controller's parameters. Parameters are changed 

based on the source code, which is the difference between the system output and the output of the reference 

model. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Model-Reference Comparative System Block Map (MRAS). 

 
In the MRAS system, the optimal behavior of the system is determined by a model, and the controller 

parameters are set based on an error, which is the difference between the outputs of the closed-loop system and 

the model [4-5]. Musculoskeletal models are important tools for studying muscle-driven movements. Active 

sensing in these models involves the production of signals to acquire sensory information [6-8]. 
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3. Problem Definition 
The nerve signal is sent from the upper centers (the brain) to the muscles of the hand by the spinal cord. The 

nervous signal is sent to the region of the sides of the elbow, arm, and muscles of the agonist and antagonist. This 

causes agonist muscle contraction and antagonist muscle release. At the site of the elbow, the force creates the 

desired torque in the swimmer's hand. Theta angle is the angle formed at the elbow between the forearm and the 

arm. This is the angle in the chisel with a rhythmic motion. Usually, these changes range from 100 to 130 degrees. 

Ultimately, the swimmer's brain gains false feedback every time and compares the error with the optimal model 

that is obtained through training. As shown in Figure 5, this feedback goes up to the point where the theta error 

converges to zero with the ideal model. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Flowchart The pathway for transmitting the nerve signal from the brain to the elbow. 
 

In swimming, the chest is more important than the swimmer’s foot. Because the chest is progressing from the 

area of the hand. With that in mind, we focused on one hand. On one hand, the part that is important to us in this 

project is the elbow area. Nervous-muscular control was used to better understand neuromuscular coordination 

and how to send the steering wheel from the brain to the muscles in the elbow area. The Black Box's neural 

network is the job of adjusting the weights to learn the best hand angle. 

A neural network can be used to build a learning model that can be applied to the brain during chest 

movement, especially the elbow angle. Using this software, we can do this modeling in the neural network. There 

are many factors involved in obtaining the desired angle of the elbow in the hand of the Crawl swimmer, here we 

refer to two of the most important inputs. We consider force and muscle length as input, and the command of 

contraction of the desired muscle to the target muscle (To give the signal a command to shrink the muscle). With 

the desired amount of muscle contraction, which is one of the muscles around the swimmer's elbow, the torque is 

created in the joint and the elbow of the swimmer can be bent to θ optimally. 
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With this diverse data from real swimmers, this conceptual model can be developed. Here, the feedback from 

the muscle and the duct returns to the neural network to move the angle of inclination and the intensity of the 

contraction command to an optimum amount. 
 

 
Fig. 6: Homomorphic model of a swimmer's muscle. 

 

4. Modeling Results 
In this article, the basis for learning in the brain of the beginner swimmer occurs under the supervision of the 

coach. For network inputs, we considered two inputs, including muscle length feedback and agonist muscle force 

feedback. The network output was determined by the command of the muscle contraction, or, in other words, the 

muscle strength at the site of the elbow. The range of elbows and muscles of the agonist and antagonist that helps 

bend the elbows is important for us in this article. The model we are looking for is a conceptual model, which can 

be derived from the neural network and control models and can determine the parameters of the neural network 

specific to each swimmer. Because at each moment the position of the hand and the elbow angle changes, our 

nervous system is variable with time and Dynamic, which should be checked with the rules of such networks. The 

movement of the signal to the muscles of the hand is shown in the following diagrams. 

 

 
 

Fig. 7: Comparison of four angular factors, muscle contraction, muscle length, and force versus time. 
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In this figure, the contraction outputs, duct length, muscle strength, and hand angle relative to time are 

shown. Graphs show that outputs are oscillating. For example, at the moment t = 2 s, the contraction has a 

maximum value, that is, the contractile muscle. In this case, the duct is in its shortest position (there is a photo 

relationship with muscle contraction). At the same time, the force increases and leads to the bending of the elbow 

angle, which is θ optimal for us. Force and contraction have a direct relationship. The graph θ in time shows that 

the swimmer swings between the angles of 100 to 130, and at the instant t = 2s the angle is reduced to 100 

degrees. 
 

5. Conclusion and Recommendations 
We used homomorphic modeling to simulate the best angle for chest pains. Our presented neural network 

model is dynamic since the inputs and outputs are variable over time. Many inputs are involved in learning the 

data entered into the swimmer's brain. Therefore, we consider two of the most important inputs, changes in 

muscle length, and muscle strength (tendon). We presented the identification of linear variable-time systems using 

Feedforward's neural network [1-2]. We also showed the impact of weights changes on the output over time. Our 

goal was to show how learning and swimming skills are acquired in each swimmer. We suggest that, given 

availability, the electromyography device (EMG) acquires the swimmer muscle signals and, considering the 

intensity of the signals, examine the muscular weaknesses of the swimmer. This process can be continued until 

the swimmer coach has brought each swimmer closer to the desired path. The presented model can help the 

professional swimmers to find their best possible arm’s angle considering their characteristics. The developed 

model can also be applied for predicting and optimizing professional swimmers’ arm angle that significantly 

influences their result in crawl swimming competitions. 
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