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Abstract- Continuous glucose monitoring (CGM) systems have great advantages for the treatment of diabetes. Com-
mon commercial sensors are placed in the subcutaneous tissue and continuously measure (1-5 min) a signal correlated
to the glucose concentration in the interstitial fluid (ISF). As the glucose concentration in the ISF and the blood compart-
ment differ, especially after meal or insulin injection, blood glucose (BG) estimation methods improve the consistency
of CGM sensor glucose values and standard blood glucose measurements. However, reference measurements (self-
monitoring blood glucose measurements) are typically required for the calibration of CGM sensors. Thus, the sensor
calibration also depends on the quality of BG estimation. In this paper we present a BG estimation method based on
moving horizon estimation combined with an adaptive noise variance estimation. Compared with the common estima-
tion methods, Kalman filtering and signal smoothing, the presented method achieves an improve of BG estimation. In
addition, the method leads to an improved estimation of past BG values, leading to better calibration results.
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1 Introduction
Continuous glucose monitoring (CGM) is a benefit for all diabetes patients. Instead of

using self monitoring blood glucose (SMBG) devices to control the blood glucose (BG) level
multiple times a day, it allows to observe the BG the whole day, even during the night
when normally no measurements are done. Another advantage is to set hypo- and hypergly-
camic alarms if the measured or the predicted BG concentration reaches a critical threshold.
These benefits can help to control BG better and to avoid health critical situations [1, 2, 3].
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Fig. 1: Smoothed CGM signal and BG measurements

Moreover a continuous and robust determination of BG
is the premise for a closed-loop blood glucose control.
Currently there are two different commercial CGM sys-
tems available, an electrochemical one based on enzy-
matic oxidation and an optical system using a glucose-
dependent fluorescence technique. All systems have in
common, that they measure glucose concentration in the
interstitial fluid (IG). It is well known, that the IG and BG
concentration differ especially after disorders like eating
or insulin administration [4]. This effect is shown in Fig.
1 which shows an IG signal measured with a CGM sensor and the corresponding reference BG measure-
ments. It can be attributed to the diffusion process between the two compartments, leading to a lag time and
a damped ISF glucose concentration [5].
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The IG concentration and the sensor signal y = h(IG, p) are in general linked by an output function
h. As the sensor parameters p may vary between different sensors and/ or drift during sensor lifetime, it is
neccessary to estimate the parameters once or twice a day. Different estimation methods have been presented
in the past [6, 7]. Almost all of them depend on SMBG measurements as reference data. However, the afore
mentioned differences between the BG and IG concentrations have a significant influence on the sensor cal-
ibration and typically lead to an incorrect parameter identification [8]. Different methods for compensating
the diffusion effect in the measuring signal were presented in the past, typically they are based on filtering
methods [9], such as Kalman filtering [10]. Most filters are based on a constant model and cannot be adapted
to changes in the noise variance. The effect of the diffusion process, however, is sometimes neglected and
the CGM signal is simply smoothed instead [11].

In contrast to this, we present a BG estimation method based on moving horizon estimation (MHE)
with an adaptive noise estimation. In the following a brief introduction of the estimation method is given
and the state transition and sensor model is described. Based on this model, an adaptation procedure for the
process and measurement noise is presented. Finally, the procedure is tested on real data and compared with
other estimation methods. Moreover the influence of the estimation accuracy on the calibration process is
analyzed. MHE provides not only a current estimate but also a smoothed past signal, which can be used for
calibration and, due to a smaller estimation error, it leads to a better identification of the sensor parameters.

2 Methods

2.1 Moving horizon estimation
Moving horizon estimation is a state estimation method minimizing a cost function defined on a sliding

window of length N [12, 13]. Based on a discrete-time system with

xk = f (xk−1,wk−1)

yk = h(xk,vk),
(1)

where xk is the state variable vector and yk is the measurement vector, the cost function includes the weighted
norm of measurement vk and process noise wk of the past horizon N at time k. Thus, the optimization problem
defining MHE is of the following form

min
{x}k|k

j|k

k

∑
j=k−N+1

1
σv

∥∥v j|k
∥∥2

+
1

σw

∥∥w j−1|k
∥∥2

, (2)

where {x}k|k
j|k are the estimated states xk−N+1, ..,xk at time k and σ2

w = var(w) and σ2
v = var(v) are the variances

of the process noise, respectively, measurement noise, equivalent to minimizing uncertainty. Compared with
Kalman filtering, the noise must be uncorrelated and zero-mean, but not necessarily Gaussian distributed.

2.2 State transition and sensor model
Referring to the two-compartment model introduced by Rebrin et al. [5], the BG-to-IG dynamic can be
described by

di(t)
dt

=
1
τ
(b(t)− i(t)) , (3)

where i(t) and b(t) are the IG, respectively, BG signal and τ is the time constant of the diffusion pro-
cess. Assuming that the sensor output function is of the form y(t) = p0 i(t)+ p1 an uncalibrated BG signal
xb = p0 b(t)+ p1 and an uncalibrated IG signal xi = p0 i(t)+ p1 can be introduced. Provided that the sensor
parameters p0 and p1 change slowly, (3) is also valid for the uncalibrated signals [14]

dxi(t)
dt

= p0
di(t)

dt
=

1
τ
(xb(t)− xi(t)). (4)
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Discretization of (4) with the time step size ∆t and modeling the BG dynamic xb with an autoregressive (AR)
model leads to the following discrete state-space representation

xb
k+1 = 2xb

k− xb
k−1 +wk

xi
k+1 = xi

k +
∆t
τ
(xb

k− xi
k)

yk = xi
k + vk .

(5)

Once the ideal, uncalibrated BG value xb
k is estimated, the BG concentration is obtained from bk =

yb
k−p1
p0

.

2.3 Blood glucose estimation
The optimization variables of the MHE formulation (2) for the given problem are the uncalibrated, noise-free
BG values xb

k−N+1|k, ...,x
b
k|k. In the following, a matrix notation is used with N-dimensional vectors consisting

of the past k−N−1, ..,k variables. Thus, the process noise wk = (wk−N|k, ...,wk−1|k)
T and the measurement

noise vk = (vk−N+1|k, ...,vk|k)
T are defined as

wk =Cxb
k +Dzk and vk = yk− xi

k (6)

with the IG signal xi
k

xi
k = Axb

k +Bzk , (7)

the initial states zk :=
(
xi

k−N ,x
b
k−N−1,x

b
k−N

)T and the matrices

A = ∆t
τ


0 0 0 · · · 0
1 0 0 · · · 0
a 1 0 · · · 0
...

. . . . . . . . .
...

aN−2 · · · a 1 0

, B =

 a 0 ∆t
τ

a0

...
...

...
aN 0 ∆t

τ
aN−1

, C =


1 0 0 · · · 0
−2 1 0 · · · 0

1 −2 1 · · · 0
...

. . . . . . . . .
...

0 · · · 1 −2 1

, D =


0 1 −2
0 0 1
...

. . .
...

0 · · · 0

 (8)

with a = 1− ∆t
τ

. With respect to these notations, the MHE formulation (2) can be transformed to

min
xb

k

(
‖wk‖2

Q−1
k
+‖vk‖2

R−1
k

)
, (9)

where the weighting matrices Qk = cov(wk) and Rk = cov(vk) correspond to the covariance matrices of
process and measurement noise. Substituting (6) into the optimization problem (9) leads to a quadratic
programming problem

min
xb

k

{
xb

k
T (

AT R−1A+CT Q−1C
)

xb
k−
(
(yk−Bzk)

T R−1A− zT
k DT Q−1C

)
xb

k

}
(10)

which can be solved by matrix inversion

x̂b
k =

(
AT R−1A+CT Q−1C

)−1 (
AT R−1 (yk−Bzk)−CT Q−1Dzk

)
= Hyk +Gzk (11)

or efficient linear solvers.
The initial states of vector zk are set to the corresponding solution of the previous estimation steps k−1

and k−2, i.e.

zk =
(

xi
k−N ,x

b
k−N−1,x

b
k−N

)T
=
(

x̂i
k−N|k−1, x̂

b
k−N−1|k−2, x̂

b
k−N|k−1

)T
. (12)

ICBES 119-3



In the initialization step (k = N), the initial states has to be estimated as well. Therefore, the optimization
vector is extended with the initial values x0 = (zk,xb

k) and the optimization problem can be modified with
A0 = [B A] and C0 = [D C] and replacing B0 and D0 with zero matrices.

In contrast to other estimation methods, MHE estimates an actual value x̂b
k|k as well as past values x̂b

j|k
( j > k−N +1). These lead to a smoothed BG and IG signal

X̂b
k−N+1,...,k = x̂b

k and X̂ i
k−N+1,...,k = x̂i

k = Ax̂b
k +Bzk. (13)

Note that X̂b
j for j ≤ k−N +1 is based on the estimates x̂b

k−N+1|k.

2.4 Noise adaptation
Optimal performance of the MHE is only guaranteed by knowing the variance of measurement σ2

v,k and pro-
cess noise σ2

w,k. In general, these two parameters are unknown and have to be estimated. Furthermore, both
parameters may vary over the measurement time. Hence, the adaptation of the variances has a direct impact
on the estimation quality [15]. An example for over- and underestimation of noise is presented in Fig. 2.
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Fig. 2: Estimated BG signal with noise adaption
(solid line), underestimated noise (dashed line) and
overestimated noise (dotted line)

Underestimation of measurement noise leads to a very
noisy signal, whereas overestimation of measurement
noise, respectively, underestimation of process noise re-
sults in a time delayed estimate.

In the following, a method is presented which is
based on the notion of equivalent degrees of freedom
[16]. It allows to predict measurement and process vari-
ance and achieves a simple adaptation of the variances.
To this end, we have a closer look at the measurement
error v and the process error w. Assuming that the pro-
cess w j−1|k and measurement noise v j|k of a horizon with
length n and j = k−n+1, ...k are part of a distribution with variance σw,k, respectively σv,k, the covariance

matrices Rk and Qk correspond to Rk = σ2
v,kI and Qk = σ2

w,kI. With the quotient γk =
σ2

v,k

σ2
w,k

of the variances of

process and measurement noise the measurement noise is given by

vk = (I−AH(γk)) yk− (AG+B)zk. (14)

With a sufficiently large horizon length (N∆t ≈ 2τ), the smoothed estimation results xb
k−N+1|k and xi

k−N+1|k
change only minimally due to an extension of the horizon (N = N +m and k = k+m). If the variance of
these starting points is neglected compared to the measurement and process variance, the covariance matrix
has the following form

cov(vk) = (I−AH(γk)) cov(yk) (I−AH(γk))
T . (15)

Furthermore, the covariance of the uncalibrated, noise-free BG signal cov(xb
k) = σ2

wC−1(C−1)T and the co-
variance of the ideal, uncalibrated IG signal cov(xi

k) = σ2
wAC−1(C−1)T AT only depends on the variance

matrix of the process noise. Moreover, since the covariance matrix of the measurement vector is composed
of the covariance matrix of the measurement noise and of the uncalibrated, noise-free IG signal, we have

cov(yk) = σ
2
v I +σ

2
wA(C−1)TC−1A. (16)

Due to insertion of (16) in (15) and applying the matrix inversion lemma, the covariance matrix of the
measurement and process noise is given by:

cov(vk) = σ
2
v (I−AH(γk)) (17)
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With the expected value of the sum of squared measurement errors SSVk = vT
k vk which can be transformed

to E(SSVk) = E(vT
k vk) = E( tr(vkvT

k ) ) = E( tr(cov(vk)) ) and the corresponding variance, the measure-
ment noise becomes σ2

v,k =
E(SSVk)
n−s(γk)

, where s(γk) = tr(AH(γk)). This results in a consistent estimate of the
measurement noise variance

σ̂
2
v,k =

SSVk

n− s(γk)
. (18)

An estiamtor for the process error variance can be derived in a similar manner, starting with the covariance
of process noise and sum of squared process errors SSWk = wT

k wk, i.e.

σ̂
2
w,k =

SSWk

s(γk)
. (19)

Initial values for the variances should be set to typical values, which are then adapted. Moreover, the noise
adaptation horizon n should be chosen considerably greater than N, since a long estimation horizon N creates
high computational costs with only little to no improvement in accuracy, while the estimation accuracy of
the variances strongly correlates with the number of data points. The SSV and SSW are therefore calculated
from the smoothed signal

SSWk =
k

∑
j=k−n+1

X̂b
j −2X̂b

j−1 + X̂b
j−2 and SSVk =

k

∑
j=k−n+1

X̂ i
j− y j . (20)

The adaptation process can be repeated after n steps.

3 Results
The presented method is tested on real CGM signals that were measured with the Fibersense CGM system
[17]. The system is based on glucose depending fluorescence measurements and has a sampling rate of
one measurement in two minutes (∆t = 2 min). The estimation based on MHE is compared to two other
estimation methods, Kalman filtering (KF) and CGM signal smoothing using a moving average filter (MA).
In addition, the effect of BG estimation on the parameter identification is analyzed.

The data set corresponds to 8 type 1 and 8 type 2 diabetic patients. The sensor was worn for 28 days.
At four clinical visits (day 1, 7, 15, 28) reference data was collected every 10 minutes over a period of
four hours using the Yellow Springs Instrument (YSI) 2300 STAT Plus glucose analyzer (YSI Life Sciences,
Yellow Springs, OH). The MHE horizon for estimation and noise adaptation are set to N = 10 and n = 50,
respectively. The Kalman filter is based on the same state-space representation (5) as MHE with average
values for process and measurement error variances. A time constant of τ = 6 min for the diffusion process
is used for both methods.

3.1 Blood glucose estimation
The filtered CGM signals x̂b

k generated with MHE as well as KF and MA are compared based on their
consistency with the measured reference data during the clinical monitoring. Note that only the actual BG
signal x̂b

k|k is used for the evaluation of the MHE results. The sensor parameters are identified by least square
estimation for each clinical visit and each estimation method.

The performance of the estimation methods is evaluated based on three metrics; the mean absolute
relative difference (MARD), the root mean square error (RMSE) and the maximal relative absolute difference
(max RAD) of the four clinical measurements of all 16 patients. Table 1 lists median and lower (Q1) and
upper quartiles (Q3) of these metrics. The MHE signal leads to the best results for all of the three metrics,
followed by the KF signal. The MA signal represents a filtered IG signal that does not account for the
diffusion process between IG and BG and leads to the worst results. KF and MHE differ mainly in the
adaptation of the process and measurement noise. This is very important for the sensor used here, because
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it is not worn for 7-10 days as usual with electrochemical sensors but for 4 weeks and the parameters can
change significantly over this time.

Table 1: Blood glucose estimation results (median [Q1,Q3]) of the three different estimation methods.

method MARD (%) RMSE (mg/dl) maxRAD (mg/dl)
MHE 6.1 [4.3, 9.3] 8.2 [5.7, 11.2] 19.0 [13.0, 29.5]
KF 7.1 [4.6, 9.6] 9.6 [6.9, 12.5] 20.0 [14.9, 31.2]
MA 7.8 [5.3, 11.6] 11.6 [8.1, 15.2] 22.8 [14.3, 31.9]

3.2 Calibration error
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Fig. 3: Uncalibrated BG signals of a CGM signal
calculated with different estimation methods (up-
per figure) and calibrated signals for two different
two-point calibrations (circled and squared BG ref-
erences).

In the normal online application, the actual BG estimate
is of utmost importance. However, the smoothed estima-
tion results X̂b

k−N+1 = x̂b
k−N+1|k can be used for the calibra-

tion procedure. All three metrics of this signal (pMHE)
are even significantly smaller in comparison to the results
of the MHE signal based on the actual estimates x̂b

k|k (me-
dian MARD = 5.1 %, median RMSE = 7.1 mg/dl and me-
dian maxRAD = 14.2 mg/dl). The improvement is due
to additional smoothing of the signal and better compen-
sation of the time delay. Changes in blood glucose only
lead to changes in the ISF glucose concentration after a cer-
tain time, so estimation methods such as MHE and KF can
only react to these changes at a later stage. Since calibra-
tion of CGM systems is typically based on blood glucose
reference measurements, the accuracy of blood glucose es-
timation has significant influence on the precision of sensor
parameter estimation.

Different methods for sensor calibration were pre-
sented in the past [6, 7]. In the following, it is referred
to the simplest one, the two-point calibration. Two refer-
ence measurements (b1,b2) and the time corresponding BG
estimation results (x̂b

1, x̂
b
2) are used to calculate the sensor

parameters p0 = b2−b1/x̂b
2− x̂b

1 and p1 = b1 − p0x̂b
1. As the

sampling time of the CGM system is rather large, interpolation between two time steps is often necessary.
A two-point calibration data set is generated for each clinical session, consisting of each possible com-

bination of two reference measurements. For each reference combination and for each estimated uncalibrated
BG signal (MHE, pMHE, KF and MA), the sensor parameters are identified and the blood glucose concentra-
tion is calculated. The metrics MARD and RMSE are estimated for each calibration scenario. Note that they
correspond to the estimation and the calibration error. Fig. 3 shows an example for two different calibration
scenarios. The upper figure shows the uncalibrated BG signals. The BG profiles shown in the middle and
lower figure are generated by two-point calibration with the marked reference data (circle, square). Although
the estimates of the uncalibrated blood glucose signal vary only slightly, the effects on the calibrated signal
are clear visible.

Table 2 lists median and quartiles of MARD and RMSE of the clinical visits of all patients for all possi-
ble calibrations. The method based on the pMHE signal has the smallest median and interquartile distance of
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Fig. 4: Boxplot of MARD for calibrations with calibration data of a region with almost no dynamical behaviour
|∆BG|

∆t < 1 mg/dl (left), with at least one reference BG measurement with medium rate of change |∆BG|
∆t < 3 mg/dl

(middle) and with at least one of a high dynamic range |∆BG|
∆t > 3 mg/dl (right).

MARD and RMSE. Even more significant are the results using reference data with high dynamical behaviour
in BG. The BG rate of change from a previous to an actual glucose concentration serves as a measure for the
BG dynamic. The calibration set is divided into three groups; the first group contains of reference data of
regions with almost stationary behaviour (|∆BG|/∆t < 1 mg/dl), the second group with at least one reference
data point with medium rate of change (1 mg/dl < |∆BG|/∆t < 3 mg/dl), and the third group consists of all
calibration combinations having at least one calibration point in a high dynamic range (|∆BG|/∆t > 3 mg/dl).
The median and quartiles of MARD and RMSE are shown in Fig.4. Besides the BG estimation error, further
errors, e. g. sensor errors or an error of the reference measurement, lead to a poor identification of the
sensor parameters. Hence, high MARD and RMSE are produced. For reasons of clarity, these outliers are
not shown in the figure.

The results of calibrations with at least one reference data point with a high rate of change are summa-
rized in Tab. 3. The small estimation error of pMHE leads to a more accurate identification of the sensor
parameters and therefore to smaller MARD and RMSE.

Table 2: Blood glucose estimation results (median
[Q1,Q3]) of all possible two-point calibrations.

method MARD (%) RMSE (mg/dl)
pMHE 10.1 [5.5, 21.5] 18.2 [10.5, 37.2]
MHE 12.0 [6.8, 25.6] 21.5 [12.7, 43.2]
KF 12.6 [7.4, 26.7] 23.0 [14.1, 45.0]
MA 14.3 [8.3, 29.3] 26.0 [16.5, 50.0]

Table 3: Blood glucose estimation results (median
[Q1,Q3]) of all possible two-point calibrations with at least
one calibration measurement with high dynamic range.

method MARD (%) RMSE (mg/dl)
pMHE 13.9 [ 7.6, 27.5] 24.8 [15.2, 42.6]
MHE 17.0 [ 9.9, 33.2] 29.4 [18.4, 53.8]
KF 22.6 [13.0, 40.5] 36.7 [22.8, 74.2]
MA 26.4 [16.9, 47.1] 42.8 [27.6, 86.2]

4 Conclusion
The presented BG estimation method combines moving horizon estimation with noise adaptation. It is shown
that an improved real-time BG estimation is achieved in contrast to MA or Kalman filtering. The improve-
ment is achieved by compensating the time delay and by optimizing the estimator using noise adaptation.
The adaptation of measurement and process noise is of advantage if the parameters change due to the aging
of the sensor. This is especially important for the sensor data used here, as the wearing time of the sensor is
significantly longer compared to conventional systems.

The method also has the advantage that in addition to the current estimated value a past blood glucose
signal is simultaneously estimated. This signal has a significantly lower noise and shows better compensa-
tion of the time delay. This advantage is particularly noticeable when calibrating the sensor with reference
BG measurements. Since an accurate estimate of the blood sugar leads to a better identification of the sensor
parameters and these have a critical role in the accuracy of the blood glucose estimation.
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Evaluation of a New Percutaneous Optical Fiber Glucose Sensor for Continuous Glucose Monitoring
in Diabetes,” J Diabetes Sci Technol, vol. 7, no. 1, pp. 13–23, 2014.

ICBES 119-8


