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Abstract – According to the World Health Organization, skin cancer represents approximately one third of every diagnosed cancer, 

reaching over 3 million cases over the world, annually. Similar to other types of cancer, though, early diagnosis is key for a good 

outcome, and computer-aided diagnosis has shown great promise in such task. In this paper we improve the results of previous work on 

skin lesion diagnosis by using a deep convolutional neural network trained on multimodal data, namely macroscopic and dermoscopic 

image and metadata. For a deep learning approach is important to have a large number of samples, which EDRA dataset does not 

present. We have improved the results of previous work in the field of multimodal and multitasking for skin lesion classification by 

performing transfer learning using similar datasets, which are predicting different skin conditions. By pre-training on datasets which 

belong to a similar domain, the network learns useful features which enhances the performances of the network.  
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1. Introduction 
Skin cancer is the most common malignancy in fair-skinned populations, and the incidences of melanoma and non-

melanoma skin cancers are rising, resulting in high economic costs [1]. Early melanoma diagnosis is crucial for improving 

the patient condition. Skin cancer is initially diagnosed by a visual inspection from a clinical expert. The initial step 

consists of a clinical screening, followed by a dermoscopic analysis (non-invasive in-vivo imaging technique, uncovers 

detailed morphological and visual properties of pigmented lesions), and a biopsy and histopathological examination if 

necessary. Because some patients are unable to go to the doctor for a visit (e.g. pandemic crisis such as COVID-19, living 

in remote areas, reduced mobility), tele-dermatology has gained more popularity. 

Nowadays, computer-assisted medical diagnosis of skin conditions has undergone major advances. Tele-dermatology 

has improved with respect to the image acquisition devices and the development of algorithms to process the information. 

Furthermore, due to medical data storage and the advances in Machine Learning, the development of automatic skin lesion 

classification has grown considerably [2].  

Automated classification of skin lesions from digital images is a challenging task due to the variations of acquired 

images and to the complexity of this problem. Automated lesion classification can both support physicians in their daily 

clinical routine and enable fast and cheap access to lifesaving diagnoses, even outside the hospital, through installation of 

apps on mobile devices [3].  

So far most automatic classification methods only consider one image type, although the clinical decision takes into 

consideration both clinical and dermoscopic images, as well as clinical information from the patient. Codella [4] reported 

that for experienced dermatologists, the accuracy in diagnosing pigmented skin lesions is improved when a dermatoscope 

is used. The usage of such methods provides useful inputs to the dermatologist, and even non-specialists might be able to 

monitor and follow-up suspected skin cancer cases [5]. 

This work aims to research on multimodal and multitasking for skin lesion classification and explore a transfer 

learning approach to improve the network performance. This paper is structured as follows: Section 1 presents the 

motivation and objectives of this work; Section 2 presents the related work along with a description of the datasets used; 

Section 3 details the proposed methodology used; in Section 4 the results and discussion are presented; Section 5 highlights 

the main conclusions of this study and points out possible directions for future work. 
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2. Related work 
One of the most significant milestones regarding automatic skin lesion classification is represented by the work of 

Esteva [6]. The authors have collected 129450 macroscopic images consisting of 2032 diseases. A Deep Neural 

Network (DNN) was trained on an Inception-V3 architecture using transfer learning. The weights of Inception-V3 pre-

trained on ImageNet [7] were used to enhance the learning process. The prediction performances were tested against 

21 board-certified dermatologists on biopsy-proven clinical images with two critical binary classification use cases: 

keratinocyte carcinomas against benign seborrheic keratoses; and malignant melanomas versus benign nevi. The 

authors used a hierarchical partitioning algorithm using a taxonomy tree for data balancing. 

Data available for training the model is a major factor for achieving high accuracy and generalization for unseen 

data. Han [8] has merged different public datasets with a proprietary dataset to gather over 20.000 samples of 

macroscopic images, with 12 classified diseases. The ResNet [9] network architecture with weights pre-trained on 

ImageNet was used for this approach. Transfer learning was performed using the freezing layer approach, where the 

weights of lower-level layers of the network are not modified, in order to preserve the basic feature extraction from 

images.      

Although the methods described above are designed for macroscopic images, if dermoscopic images are available, 

the DNN’s can be easily trained for dermoscopic images with minor alterations. The interest in skin lesion diagnosis 

using dermoscopic images increased after the ISIC dataset challenge was introduced [10], alongside with the 

benchmark for evaluation. The best performing approach was obtained by using an ensemble of DNNs and enhancing 

the number of samples by merging other datasets. 

There are also methods developed upon both types of images and including additional metadata. In [11] the model 

for diagnosis prediction is generated by joining two InceptionV3 networks with pre-trained weights on ImageNet [7].  

All three modalities are used as input to predict the diagnosis and the 7-point checklist [12]. Since the 7-point checklist 

and the diagnosis are related tasks, the results are improved since the multitasking prediction makes the results more 

robust [13]. Furthermore, the model performance is increased by combining the outputs of the complementary 

modalities. During training all the modalities are available, whereas for the inference stage one or a specific 

combination of modalities can be used.  

Yap [14] has also worked on multimodal data for skin lesion classification. The ResNet50 network with weights 

pre-trained on ImageNet [7] was used to reduce the overfitting for a relatively small database (2917 cases). Despite 

more images were available initially, some samples were removed from the dataset during the data curation. For 

example, images of poor quality or images where a part of the body is identifiable were removed. Therefore, the risk 

of biased data towards classification of certain areas of the body was reduced. It is worth mentioning that in this study 

[14] is noticed that merging the two image modalities improved the results considerably, whereas the metadata input 

had a marginal impact.  

     

2.1. Datasets 
Although there are several datasets available for skin cancer analysis, it is not viable to merge all of them into a 

global one. They cannot be trained together using all the available inputs, due to the variations amongst the metadata 

used, types of images (dermoscopic and macroscopic), or even the predicted output (classes). In this work we select 

the publicly available datasets which have macroscopic or dermoscopic images and the diagnostic labels are related.   

The EDRA [11] dataset contains samples of various modalities (macroscopic and dermoscopic images, and 

metadata). This dataset consists of 1011 images for each image modality (total of 2022 images). Alongside the images, 

relevant information as patient metadata and the 7-point checklist is provided (Table 1b). The diagnosis consists of a 

basal cell carcinoma - BCC, nevus - NV (blue, clark, combined, congenital, dermal, recurrent and reed nevus), 

melanoma – MEL (in situ, less than 0.76mm, between 0.76-1.5mm, metastasis), miscellaneous – MISC 

(dermatofibroma, lentigo, melanosis, miscellaneous, vascular lesion), and seborrheic keratosis - SK. Regarding the 7-

point checklist, there is the annotation of the presence\absence of the feature, and if it is regular, irregular or atypical. 

Although there are various types of diagnosis, and 7-point checklist features, they are grouped into the main classes  



 

 

 

 

 

 

ICBES 120-3 

Table 1: Datasets used and the 7-points checklist data from EDRA dataset. 

  

 

(pigment network – PN, blue whitish veil – BWV, vascular structures – VS, pigmentation – PIG, streaks – STR, dots and 

globules – DaG, and regression structures - RS). The available metadata is represented by the location of the skin lesion on 

the body, its elevation, and the gender of the patient. For further comparison with other methods, the authors have also 

proposed a splitting of the dataset into 413 samples for training, 203 for validation, and 395 for testing.   

The ISIC 2019 challenge dataset is composed of several datasets (Ham1000 [15], BCN_20000 [16], and MSK [4]). 

All the images of ISIC 2019 are dermoscopic ones. The 25331 images have associated metadata and are labelled regarding 

the following skin conditions: melanoma, melanocytic nevus, basal cell carcinoma, actinic keratosis, benign keratosis, 

dermatofibroma, vascular lesion, and squamous cell carcinoma (Table 1a). 

On the other hand, the Dermofit [17] dataset consists of macroscopic images only. The Dermofit Image Library is a 

collection of 1,300 focal high-quality skin lesion images collected under standardised conditions with internal colour 

standards. The lesions span across ten different classes including melanomas, seborrheic keratosis and basal cell 

carcinomas (Table 1a). Each image has a gold standard diagnosis based on expert opinion (including dermatologists and 

dermato-pathologists). Images consist of a snapshot of the lesion surrounded by some normal skin. A binary segmentation 

mask that denotes the lesion area is included with each lesion. The categories of lesions are actinic keratosis, basal cell 

a) Dataset  Diagnostic samples 

 

 
EDRA 

Basal cell carcinoma 

(BCC) 

42 

Nevus (NEV) 575 

Melanoma (MEL) 252 

Miscellaneous (MISC) 97 

Seborrheic keratosis (SK) 45 

 

 

ISIC 

2019 

Melanoma 4522 

Melanocytic nevus 12875 

Basal cell carcinoma 3323 

Actinic keratosis 867 

Benign keratosis 2624 

Dermatofibroma 239 

Vascular lesion 253 

Squamous cell 

carcinoma 

628 

 

 

 

 

Dermofit 

Actinic Keratosis  45 

Basal cell carcinoma 239 

Melanocytic nevus 331 

Squamous cell 

carcinoma 

88 

Seborrheic keratosis 257 

Intraepithelial carcinoma 78 

Pyogenic granuloma 24 

Haemangioma 96 

Dermatofibroma 65 

Melanoma 76 
 

b) 7-Point Checklist (EDRA) 

 

 

Type 7-

point 

score 
Piment 

Network 

(PN) 

Absent (ABS) 0 

Typical TYP 0 

Atypical ATP 2 
Blue Whitish 

Veil (BWV) 
Absent (ABS) 0 

Present PRS 2 
Vascular 

Structures 

(VS) 

Absent (ABS) 0 

Regular (REG) 0 

Irregular (IR) 2 
Pigmentation 

(PIG) 
Absent (ABS) 0 

Regular (REG) 0 

Irregular (IR) 1 
Streaks 

(STR) 
Absent (ABS) 0 

Regular (REG) 0 

Irregular (IR) 1 
Dots and 

Globules 

(DaG) 

Absent (ABS) 0 

Regular (REG) 0 

Irregular (IR) 1 
Regression 

Structures 

(RS) 

Absent (ABS) 0 
Present (PRS) 1 
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carcinoma, melanocytic nevus, seborrheic keratosis, intraepithelial carcinoma, pyogenic granuloma, haemangioma, 

dermatofibroma, and malignant melanoma. 

     

3. Proposed Method 
Since the EDRA dataset has a small number of samples for a very complex task, we decided to enhance the 

performance of a DNN model by using domain adaptation. The other available datasets present a significant variation 

amongst them (number of samples, prediction of various skin diseases, different metadata, various modalities, etc.), 

but on the other hand the prediction of the outputs is in the same domain as the EDRA dataset. In this work we have 

performed transfer learning by training on two databases from a similar domain (Fig. 1). 

 

 
Fig. 1: Proposed pipeline for transfer learning of multimodal approach on multitask learning. 

 
3.1. Multimodal/multitasking network 

The DNN model used in this work is the one proposed by Kawahara [11]. A multimodal network is deployed by 

using two InceptionV3 models pre-trained on ImageNet [7] to predict the diagnosis and the 7-point checklist. The two 

networks are trained jointly using late fusion and metadata. There are 5 modalities proposed for training the network: 

macroscopic images, dermoscopic images, metadata and macroscopic images, metadata and dermoscopic images, and 

a combination of all three (macroscopic and dermoscopic images and metadata). The network parameters are updated 

with respect to the loss of all the modalities: 

 

𝐿(𝑥, 𝑦; 𝜃) =  ∑ 𝑙(𝑥, 𝑦𝑗; 𝜃),

8

𝑗=1

 (1) 

 

where 𝑙(∙) is the categorical cross-entropy operator, x is the input (5 modalities), y is the output of the diagnosis and 7-point 

checklist, and 𝜃 is a set of trainable parameters. 

The classification layers are removed from the InceptionV3, and a new classification layer is added for each 

modality. Instead of using a dense layer, the global average pooling followed by a softmax layer is adopted. This 

classification layer outperforms the dense layer since it reduces the overfitting during training. We have experimented 

with a dense layer approach, and we concluded that the global average pooling has a major benefit for network 

performance. 
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3.2. Pre-training 
Since the proposed network consists of two InceptionV3 networks (one network for each type of image), we have pre-

trained these models accordingly. For the dermoscopic images the ISIC2019 dataset [4], [15], [16] was used, and for the 

macroscopic images the Dermofit dataset [17] was used. The models were trained separately using the same 

hyperparameters as [11]. For all the models a learning rate of 1e-3 was used, with a decay of 1e-4, and the SGD optimizer. 

For both datasets, the data was split for training and validation by selecting 90% and 10% of the data, respectively. To 

ensure we have a uniform distribution of classes, we have selected the samples from datasets accordingly. To deal with 

imbalanced data, we have used augmentation by up-sampling. The data augmentation consists of several image processing 

operations like flipping, rotating, zooming and height and width shifts. 

The freezing layers approach was used for training the dermoscopic and macroscopic models, to enhance the learning 

process. Similar to Kawahara [11], the first two blocks were excluded from learning. Since the ISIC2019 dataset has more 

samples, we used only 3 epochs for each InceptionV3 block, and for the model trained on macroscopic data 5 epochs for 

each block were used. 

After the training process is finished, the classification layers of both networks are removed and the two InceptionV3 

networks are used to extract useful features related with skin lesions. We have implemented a modified version of 

Kawahara’s network, and loaded the weights generated by training the two InceptionV3 models on ISIC2019 and Dermofit 

datasets. Our multimodal network differs from Kawahara’s approach through the addition of the metadata after the 
prediction of macroscopic and dermoscopic modalities. 

 

4. Results 
Because of the scarcity of the data is very important to be able to predict a diagnosis regardless of missing data. In 

Table 2 the accuracy results of our proposed training procedure is depicted. There is an increase of 5% in accuracy 

regarding the prediction of the diagnosis when compared to Kawahara’s method [11]. Although the metadata might 

provide useful information during training due to the aggregated loss function, the combination of image and metadata 

reveals marginal or no improvements over the single image modalities. This behaviour is noticed in the literature [7], 

where the addition of metadata had a marginal improvement. The lowest accuracy is achieved for macroscopic images, 

because the clinical images are providing less details compared with the dermoscopic ones. Although the metadata does 

not improve the accuracy of the diagnostic, the classification of the 7-points checklist is improved. There is no direct 

improvement of the diagnostic by using the metadata, but during training we suspect that the network is learning useful 

features which allow a better generalization.  We can notice that there is an overall improvement over the direct 

classification for the diagnostic. For prediction of the melanoma from the 7-point checklist criteria, the method proposed 

by Kawahara is obtaining better results. One possible explanation for this is related to the available data for pre-training the 

networks (dermoscopic and macroscopic), where only the diagnostic was used as a target. 

 
Table 2: Accuracy for each of the 7-point checklist criteria and diagnosis. 

 

Modality BWV DaG PIG PN RS STR VS DIAG 

Macro 76.5 47.1 52.4 54.2 68.4 58.5 62.5 61.8 

Derma 85.6 54.7 63.5 65.1 78.7 72.9 80.0 78.0 

Macro-Meta 77.2 48.4 51.1 55.2 68.4 59.0 64.1 61.8 

Derma-Meta 86.3 58.7 63.8 65.6 78.7 73.4 80.5 77.0 

All 85.6 57.5 64.6 65.1 77.2 71.1 80.3 75.7 

x_combine 85.3 57.5 64.6 64.6 78.5 71.9 81.3 79.2 

x_combine [11] 87.1 60.0 66.1 70.9 77.2 74.2 79.7 74.2 

            

In Table 3 are the results of the 7-point checklist prediction regarding the sensitivity, specificity and precision. Since 

melanoma is estimated by a linear combination of the 7-point checklist [12], we have evaluated this prediction also. To 
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compute the 7-points checklist score for melanoma, the look-up table is used (Table 1b). The obtained score is truncated 

using a threshold (1, or 3) to predict if the skin lesion is malignant: 

 

𝑆 =  ∑ 𝑦𝑗𝑤,

7

𝑗=1

 (2) 

𝑀 =  {
𝑚𝑒𝑙𝑎𝑛𝑜𝑚𝑎,                  𝑆 ≥ 𝑡  
𝑛𝑜𝑡 𝑚𝑒𝑙𝑎𝑛𝑜𝑚𝑎,          𝑆 < 𝑡 

, (3) 

 

where 𝑆 is the 7-points score, 𝑦𝑗 is the prediction of the 7-points labels, and 𝑤 is the associated weight. The sample is 

classified as melanoma if the 7-points score is above a certain threshold 𝑡  
The x_combine represents the result of mixing several modalities (average of derma, derma-meta, and all 

modalities). By combining several outputs, the results are improving. This is similar with an ensemble of networks, where 

the majority of the networks will predict a good result usually.  

 
 Table 3: Results of diagnostic category and melanoma using the 7-point checklist point scores. 

 

Modality Metric 
DIAG Avrg. MEL-7pt 

BCC NEV MEL MISC SK t=1 t=3 

x-combine 

Sens. 56.2 93.2 67.3 60.0 42.1 63.8 93.1 66.3 

Spec. 98.4 73.9 94.6 97.2 98.9 92.6 43.9 84.0 

Prec. 60.0 81.6 81.0 70.6 66.7 72.0 36.3 58.8 

x_combine[11] 

Sens. 62.5 88.6 61.4 47.5 42.1 60.4 96.0 69.3 

Spec. 97.9 71.6 88.8 97.5 99.5 91.0 36.1 77.6 

Prec. 55.6 79.5 65.3 67.9 80.0 69.6 34.0 51.5 

          

 
Fig. 2: Confusion matrices for diagnosis and the 7-point prediction of the test set evaluation. The x-axis indicates the model’s 

prediction, while the y-axis indicates the ground-truth. Colours indicate the percentage of each label for each entry, normalized by the 

total number of true labels. 

 

Regarding the distribution of the predicted diagnosis and the 7-point checklist, in Fig. 2 we can observe how well the 

model is performing with respect to each class. Although the training of the network was performed aiming to mitigate the 

use of an imbalanced dataset, is noticeable a slight bias towards certain classes. For the diagnostic prediction, we noticed 

that the model is biased towards Nevus, since most of the false negative cases are miss-classified as Nevus (except BCC). 
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This occurs because the dataset has a few samples, where most of the images are skin lesions with a Nevus condition. The 

results can be further improved by considering the one vs. all approach when fine-tuning the model.     

 
5. Conclusion 

In this work it was investigated the transfer learning for training a multimodal/multitasking network for skin lesion 

classification. This work was motivated by the scarcity of the available data (EDRA dataset) and by the inconsistency of 

the available datasets (prediction of different outputs, the metadata is not similar, a single type of image available, etc.). 

Two networks were trained separately on specific datasets (ISIC for dermoscopic images and Dermofit for macroscopic 

ones), and the knowledge was transferred to a multimodal network designed to predict the diagnostic and the 7-points 

checklist using EDRA dataset. The results show that transfer learning can be used to further increase the performance of a 

DNN framework, by training on samples related to a specific domain (skin conditions). Although the metadata is available 

for the training of the networks, no significant improvement is observed, even though it can enhance the learning process 

Regarding the performances achieved on EDRA dataset, we conclude that this dataset is very challenging, having a 

limited number of samples, with some of the images that are of low quality. Furthermore, some body parts are identifiable 

in some images and the model might become biased for a specific class. 

As future work, we plan to mitigate the bias of the network by using additional layers to differentiate from classes 

which have a similar output. E.g. a classification layer to differentiate between Melanoma and Nevus, since 25 out of 33 

false negative predictions of Melanoma are classified as Nevus (Fig. 2). Another approach to mitigate the reduced number 

of samples is by using smart augmentation (GAN, CGAN, WGAN, etc.). Furthermore, pre-training on other datasets which 

have the 7-point checklist or other additional information, which will be suitable for multitask learning can be also 

considered as future work.  
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