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Abstract - Aortic dissection is a severe cardiovascular disease caused by the occurrence of a tear in the aortic wall. As a result, the 

blood penetrates the wall and makes a new blood channel called false lumen. The hemodynamic conditions in the false lumen may 

contribute to the formation of thrombi, which influence the patient diagnosis and outcomes. In this study, the focus is on a 

hemodynamic-based model of thrombus formation. Since the model construction presents sources of uncertainties in the model 

parameter, a variance-based sensitivity analysis is performed. Thrombus formation at a backwards-facing step is considered as a 

benchmark for the numerical simulations and sensitivity analysis. This geometry is capable of representing the main contributions of 

the model in thrombus formation. The study aims not only at getting a better insight into the model’s structure but also at preparing 

model simplifications with the aim of future patient-specific simulations. A polynomial chaos expansion is employed as a surrogate 

model, from which the derivation of quantitative sensitivity indices is enhanced. In this study, nine model parameters are selected, 

whose actual values are not well known. The model responses taken into account are the maximum volume fraction of thrombosis, its 

time development, and the thrombus growth rate. The results show that the model lends itself to model reduction since some of the 

model parameters show little to no influence on the model’s outputs. A threshold value related to the concentration of bounded platelets 

is identified as the key input parameter dominating the model predictions in the current geometry. 
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1. Introduction 
Aortic dissection (AD) is a disease that develops a second volume, called false lumen (FL), in the aorta. AD is 

classified as type A when it initiates in the ascending thoracic aorta, type B when the initial tear in the aortic wall is in the 

descending thoracic aorta (Stanford Classification System). Type B aortic dissection (TBAD) is a severe disease associated 

with high mortality, which may also lead to complications such as aortic aneurysm, rupture or malperfusion syndromes [1]. 

In the current study, we focus on TBAD and the role of thrombosis in the false lumen. 

The haemodynamic conditions in the FL, including flow disturbance, recirculations, and significant variability in the 

wall shear stress (WSS) presumably contribute to the formation and growth of thrombi [2]. In [3], it is showed that partial 

thrombosis is associated with a higher mortality rate, whereas complete thrombosis of the FL improves patients’ prognosis 

[4, 5]. Up to now, it is unclear what circumstances favour thrombosis following aortic dissection. Thrombus formation 

models may play a vital role in the analysis of hemodynamics in cardiovascular environments. 

In [2, 6] a haemodynamic-based model capable of predicting false lumen thrombosis in TBAD is developed. However, 

because the model is mostly phenomenological, the parameters of the model may not be determined from chemical or 

biological characteristics of the blood. Instead, the parameters will usually be obtained from inverse modelling, i.e. fitting 

to measured data. As suitable data is very sparse, it is of vital importance to narrow down the number of model parameters. 

A global sensitivity analysis is thus suggested to understand the influence of the parameters. Moreover, although the model 

performs well in predicting the location of thrombus formation, so far it is unable to reproduce the growth rate as observed 

in in-vivo and in-vitro studies. Therefore, in order to bridge the gap between numerical simulations and real-life studies, we 

need more insight into the model parameters and their role in thrombus growth.  
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The current study aims at quantifying and reducing the uncertainty in the model. The research questions that are at 

the core of the study are: which input parameters influence the growth rate and final volume of the thrombus? How is 

the influence of the parameters distributed over the time of thrombus formation and growth? That is, if some input 

parameters have an active role in thrombus formation at a particular moment of the process. 

A global sensitivity analysis is performed with a variance-based approach. The variance of the quantity of interest 

is decomposed in the sum of the space contributions of input parameters [7]. We decided to employ a variance-based 

approach, since knowledge regarding the model is limited, in the sense that it is unknown whether its behaviour with 

respect to the parameters is linear, additive, monotonic, or none of them. 

 

2. Thrombus formation and growth 
In this study, the thrombus formation model developed by [2] is used. It is a hemodynamic-based model in which 

the thrombus forms and grows mainly in areas where low shear stress and high residence time are measured. The 

model consists of the following equations, which are coupled with Navier-Stokes equations. High residence time 𝑇R 

marks the areas where platelets spend more time [2], 

 
𝜕𝑇R

𝜕𝑡
+ 𝒖 ∙ 𝜵𝑇R =  𝐷TR

𝜵2𝑇R + 1. (1) 

 

where 𝒖 denotes the velocity vector, and 𝐷TR
 is the diffusion coefficient of the residence time. The transport equation for 

the concentration 𝑐i of resting or activated platelets (RP or AP, resp.) is 

 
𝜕𝑐i

𝜕𝑡
+ 𝒖 ∙ 𝜵𝑐i =  𝐷P𝜵2𝑐i + 𝑠i,   i = RP, AP. (2) 

 

Here, 𝐷P denotes the diffusion coefficient of platelets, which is the same for resting and activated platelets. 

Furthermore, 𝑠i denote reaction terms for the conversion of resting to activated platelets [2]. 

The so-called coagulant concentration 𝑐 accounts for the lumped effect of all underlying biochemical reactions in 

the coagulation cascade [2]. In low shear rate areas, there is a production of coagulant at the wall based on the 

conditions specified on the boundary, compare Eq. (4). This modified boundary condition for the flux of coagulant is 

taken from [6] for the backwards-facing step. The diffusion-reaction equation for the coagulant is 

 
𝜕𝑐

𝜕𝑡
=  𝐷ceff

𝜵2𝑐 + 𝑘c𝜙th𝜙γ̇, where 𝜙γ̇ = 𝛾̇t
2 ( 𝛾̇2 + 𝛾̇t

2)⁄ , and  (3) 

𝐷ceff

𝜕𝑐

𝜕𝑛
|

wall
= {

𝑘c,wall   

0   
 

if γ̇ < 1 s−1 and 𝑐BP ≤ 200 nM, 

otherwise, (4) 

 

where 𝑘c is the coagulant kinetic constant, 𝛾̇ is the shear rate, and the subscript t denotes the threshold values. The 

effective coagulant diffusivity 𝐷ceff
 is proportional to the coagulant diffusivity 𝐷c,   

 

𝐷ceff
= 𝜙γ̇𝐷c. (5) 

 

Finally, the rate of production of bounded platelets concentration 𝑐BP is given by 

 
∂𝑐BP

∂t
= 𝑘BP𝜙BP𝜙γ̇𝑐AP, where 𝜙BP = (𝑐2/(𝑐2 + 𝑐t

2))(𝑇R
2/(𝑇R

2 + 𝑇Rt

2 )), 

 
(6) 



 

 

 

 

 

 

ICBES 127-3 

where 𝑘BP is the bounded platelets reaction rate, and 𝑐AP is the activated platelets concentration. The Navier-Stokes 

equation is modified to incorporate the thrombus growth [2] 

 

𝜌 [
𝜕𝒖

𝜕𝑡
+ (𝒖 ∙ 𝜵)𝒖] = −𝜵𝑝 + 𝜵 ∙ 𝝉 − 𝑘th𝜙th𝒖, (7) 

 

where 𝜌 denotes the blood density, 𝑝 the pressure, 𝝉 is the Cauchy stress tensor, 𝜙th(𝑐BP, 𝑐BPt
) = 𝑐BP

2 (𝑐BP
2 + 𝑐BPt

2 )⁄  and it 

indicates local thrombosis as a function of the bounded-platelets concentration 𝑐BP. 𝑘th is a coefficient with a sufficiently 

high value to stop the flow where the thrombus is formed [2]. In summary, the model controls the formation of thrombus 

based on shear stress, residence time, the concentration of coagulant, and bounded platelets. 

 

2.1. Numerical simulations 
OpenFOAM software is used for solving blood flow and thrombus formation equations. The blockMesh utility in 

OpenFOAM is used for generating a structured hexahedral mesh. Mesh and time-step sensitivity analysis resulted in 20000 

elements and time-step of 0.005s. Blood is assumed as a Newtonian fluid. The thrombus formation simulation starts at 12 

seconds from the steady-state flow solution. A Reynolds number of 490 is chosen to be consistent with in-vitro results in 

[8] and numerical simulations in [9]. In Fig. 1, the velocity magnitude contour of the steady-state solution is shown. The 

model predicts thrombus formation in the recirculation area behind the step, see Fig. 3. 

 

 
Fig. 1: Velocity magnitude contour. 

 

 
Fig. 2: Streamlines depicting recirculation at the back of the 

step. 

 
Fig. 3 Evolution of thrombus in time at the back of the step, the 

thrombus has reached to 16 mm length in 50 s. 
 

3. Sensitivity analysis 
One of the most widely used technique in global sensitivity analysis is the variance-based method. Consider a quantity 

of interest 𝑌 of a model as a function of an input random vector 𝒙 of dimension 𝑛, i.e. 𝑌 = 𝑓(𝒙) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛). Global 

sensitivity analysis aims to quantify the connection between the variance of the model output, given the variability of its 

input 𝑥𝑖 to make the model personalization easier. 

A random variable 𝑥i is considered to be influential (non-influential) to the model 𝑓 with output 𝑌 if the conditional 

variance 𝕍[𝔼[𝑌|𝑥i]] is larger (smaller) than the variance of the quantity of interest 𝕍[𝑌], where 𝕍[∙] and 𝔼[∙] represent the 

variance and the mean operators. The first-order sensitivity index (or first-Sobol index) is defined as [10] 
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𝑆i =
𝕍[𝔼[𝑌|𝑥i]]

𝕍[𝑌]
. (8) 

 

The Sobol index represents the contribution of the random variable 𝑥i, for 1 ≤ 𝑖 ≤ 𝑛, to the change of the model 

output 𝑌. 

The total-order sensitivity index (or total-Sobol index) is defined as 

 

𝑆i
T = 1 −

𝕍[𝔼[𝑌|𝒙~i]]

𝕍[𝑌]
=

𝔼[𝕍[𝑌|𝒙~i]]

𝕍[𝑌]
. (9) 

 

This index evaluates the total effect of an input parameter, by accounting for the conditional variance of the 

output, conditioning to all factors except the given one, 𝒙~i.  

The first-order index identifies the level of influence of the single parameter on the output in the analysis, but it 

does not give information regarding the interaction of the parameter with other variables of the input space. It allows 

factor prioritization setting, where a ranking of the parameters is produced. The rank indicates the level of influence on 

the model variation. The total-order sensitivity index specifies the influence of the input parameter on the model 

output and the level of interaction with other input parameters. The total-order index is used to produce the factor 

fixing setting. Here, the lower values are considered to decide which variable has no- or low-effect on the output. Such 

variables can be successively considered as model’s constant. 

 

3.2 Polynomial Chaos Expansion 
The Sobol indices are computed from a polynomial chaos expansion (PCE) of the model [11]. The expansion will 

also serve as metamodel of the thrombus formation model. PCE consists of the sum of orthogonal, multivariate 

polynomials 𝜳α of increasing order up to some maximal polynomial order 𝑝 [12]. The polynomials are multiplied by 

expansion coefficients 𝑦α, which can be estimated with different methods. The expansion is written as 

 

𝑌(𝒙) ≈ 𝑓PCE(𝒙) = ∑ 𝑦α𝜳α(𝒙)

α∈𝐴

, (10) 

 

where 𝐴 is a set of multi-indices α which refer to the degree of each polynomial and each input parameter, the multivariate 

polynomials 𝜳α are defined as the product of univariate polynomials of order αi, i.e. 𝜓αi
. The univariate polynomials are 

generated following the Askey scheme [13] for the composition of polynomials. 

Finally, from the PCE, it is possible to estimate the two sensitivity indices as the ratio between the PCE 

coefficients [13]. Since the case study is dynamic, the variance of the output evolves in time. A pointwise-in-time 

evaluation of sensitivity indices turns out to be inaccurate in describing such evolution. Therefore, an analysis that is 

aware of the history of the output variability is needed. The implementation of time-dependent indices, known as 

generalized Sobol indices [14] read as 

 

𝑆i(𝑡) =
∫ 𝕍𝑖[𝑌(𝑥𝑖, 𝜏)]𝑑𝜏

t

0

∫ 𝕍[𝑌(𝒙, 𝜏)]𝑑𝜏
t

0

≈
∑ 𝑦α

2(𝑡)α∈Ai

∑ 𝑦α
2(𝑡)α∈Ai;α≠1

=
∫ ∑ 𝑦𝛼

2(𝜏)α∈Ai
𝑑𝜏

t

0

∫ ∑ 𝑦α
2(𝜏)α∈Ai;α≠1 𝑑𝜏

t

0

, (11) 

𝑆i
T(𝑡) ≈

∑ 𝑦α
2(𝑡)α∈Ai

T

∑ 𝑦α
2(𝑡)α∈Ai;α≠1

=
∫ ∑ 𝑦α

2(𝜏)α∈Ai
T 𝑑𝜏

t

0

∫ ∑ 𝑦α
2(𝜏)α∈Ai;α≠1 𝑑𝜏

𝑡

0

. (12) 
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3.3 Application to the thrombus formation model 

The input parameters that are considered to represent uncertainty are listed in Tab. 1. To adequately cover and 

understand the sensitivity of chosen parameters on thrombus formation, the volume fraction of thrombosis and the 

thrombus growth rate are considered as the quantity of interest. The volume fraction of thrombosis of the simulation 

volume 𝑉 is defined as 

 

𝜙̅
th

(𝑡) =
1

𝑉
∫ 𝜙th(𝑥, 𝑦, 𝑧, 𝑡)𝑑𝑉,

V

 (13) 

 

and the thrombus growth rate as: 

 

𝜙̇̅
th

(𝑡) =
𝑑

𝑑𝑡
(𝜙̅th(𝑡)) =

1

𝑉

𝑑

𝑑𝑡
∫ 𝜙th(𝑥, 𝑦, 𝑧, 𝑡)𝑑𝑉

V

. (14) 

 

Each random variable has been classified as uniformly distributed since the knowledge about their distribution is, at 

the moment, unclear. This approach allows evaluating different scenarios in which the thrombus formation could be highly 

or mildly altered. The sample is produced with latin hypercube sampling techniques with size 𝑁s equal to 450. This 

number of simulations is bounded by the high computational cost of the model and fulfils the requirements for the 

construction of the PCE. The latter is solved with the regression LARS method through the Matlab toolbox UQlab [15], the 

degree of the polynomial is set to 3 because the convergence of sensitivity indices is achieved. 

 
Table 1: Input parameters of the thrombus model and their probabilistic distribution used for the sensitivity analysis. All the 

input parameters follow a uniform probability distribution. 

Parameters Notation PDF parameters 

Activated platelets concentration 𝑐AP  [1.00e-10, 1.00e-06] 

Coagulant diffusivity 𝐷c   [2.00e+04, 2.00e+06] 

Coagulant kinetic constant 𝑘c  [8.00e-11, 8.00e-09] 

Bounded platelets reaction rate 𝑘BP  [1.00e+03, 1.00e+05] 

Coagulant concentration threshold 𝑐t  [2.00e+03, 2.00e+05] 

Bounded platelets concentration threshold 𝑐BPt [1.00e-01, 3.00e+00] 

Coagulant kinetic constant at the wall 𝑘c,wall [1.00e+02, 1.00e+05] 

Residence time threshold 𝑇R  [0.750e+13, 2.25e+13] 

Bounded platelets concentration threshold at the wall 𝑐BPbt  [1.00e+02, 2.50e+05] 

 
4. Results 

Fig. 4 shows the frequency of the recorded maximum volume fraction of thrombosis. Its distribution resembles a 

Gamma distribution whose mean value shows that on average 3% of the simulation volume is predicted to be a thrombus. 

The range of the response varies from the absence of thrombus to thrombus coverage of over 20% of the volume domain.  

The sensitivity indices 𝑆i and 𝑆i
T for the thrombus formation model are listed in Tab. 2. By looking at the first column, 

one observes that the first-order sensitivity indices do not sum up to one, which occurs in the presence of non-additive 

model behaviour. Thus only 90% of the output variance can be attributed to a single random variable. 
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Since the thrombus develops in time, it is important to understand how the variation of its development evolves in 

time. The results show several trends (Fig. 5 and Fig. 6). Increasing variability in time is visible, especially towards the 

end of the simulation time. Such a trend is critical for a model in which the computation of the thrombus volume is the 

final goal. The results of the generalized Sobol indices for the volume fraction of thrombosis and the thrombus growth 

rate are shown in Fig. 7 and Fig. 8, respectively. 

 

5. Conclusions 
In Tab.2, the first- and total-order sensitivity indices and their differences are shown. The bounded platelets 

threshold  𝑐BPt accounts alone, i.e. without considering interactions, for about 64% of the variation of the volume 

fraction of thrombosis. By subtracting the first-order from the total-order indices of Tab. 2, the interaction effect is 

estimated. The input  𝑐BPt expresses a relatively high interaction level, which suggests that not only the bounded 

platelets threshold 𝑐BPt should be carefully defined in the model, but also that its interaction with other input factors 

has to be investigated. 

Input parameters such as the bounded platelets reaction rate 𝑘BP and the concentration of activated platelets 𝑐AP 

also, show high sensitivity indices, and therefore their proper determination requires further investigation. In general, 

the input parameters that include the platelet’s mechanics control most of the process, except the bounded platelets 

 
Fig. 4: Frequency histogram of the maximum volume fraction of 

thrombosis. 

Table 2: Sobol indices of the input random variables on the 

maximum volume fraction of thrombosis 

 

 𝑆i 𝑆i
T 𝑆i

T − 𝑆i 

𝑐BPt  0.638 0.730 0.093 

𝑘BP  0.198 0.277 0.078 

𝑐AP  0.043 0.060 0.017 

𝐷c  0.012 0.017 0.004 

𝑇R  0.007 0.014 0.007 

𝑘c,wall  0.001 0.008 0.007 

𝑐BPbt  0.000 0.005 0.004 

𝑐t  0.000 0.005 0.005 

𝐾c  0.000 0.001 0.001 

Total 0.900 1.117 0.218 
 

 
Fig. 5: Volume fraction of thrombosis. The continuous line 

shows the mean value; the dashed line represents the 2 standard 

deviations of the data. 

 
Fig. 6: Thrombus growth rate in time normalized by each 

maximum. The continuous black line identifies the median value; 

the grey area represents the interquartile range; the dotted lines 

are the maximum and minimum data points. 
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threshold at the boundary 𝑐BPbt. All the other input random variables, including the parameters relating to the coagulant, 

have little to no influence on the considered output, and therefore they could be switched to fixed values without altering 

the model response.  

The sensitivity analysis in time of the volume fraction of thrombosis and the growth rate also shows the big influence 

influence of the bounded platelets threshold 𝑐BPt, Fig. 7 and 8. Of interest is the role of the residence time threshold 𝑇R in 

the early stage of thrombus formation. Its primary influence at sparking off the formation of the thrombus is visible. This 

behaviour is expected and mimics the physical condition for thrombus formation. The influence of the coagulant diffusivity 

𝐷c presents a peak right after the first formation of the thrombus, meaning that it is guiding the formation where the 

coagulant diffuse better. Successively, its influence decreases to a level of little significance. The time-dependent 

influences of all other input random variables confirm the result obtained for the volume fraction of thrombosis and can be 

considered as constant.  

In conclusion, the results of the sensitivity analysis for the model outputs show that the bounded platelets threshold  

𝑐BPt exerts the most substantial influence. The reaction rate of bounded platelets 𝑘BP plays the second-largest role in the 

thrombus growth rate and the volume fraction of thrombosis. 
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