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Abstract - Spatial information in broadband array signals is embedded in the relative delay with which sources illuminate different 
sensors. Therefore, second order statistics, on which cost functions such as the mean square rest, must include such delays. Typically, 
a space-time covariance matrix therefore arises, which can be represented as a Laurent polynomial matrix. The optimisation of a cost 
function then requires extending the utility of the eigenvalue decomposition from narrowband covariance matrices to the broadband 
case of operating in a space-time covariance matrix. This overview paper summarises efforts in performing such factorisations, and 
demonstrated via the exemplar application of a broadband beamformer how thus well-known narrowband solutions can be extended to 
the broadband case using polynomial matrices and their factorisations.
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1. Introduction
Signals acquired by M sensors may be expressed in a data vector x[n] ∈ CM, where each vector element represents one 

time series in the discrete time index n. If we assume that these sensors pick up emissions by some sources, then this data 
contains both temporal clues about the source signals and spatial information on the sensor position, since e.g. a source signal
will arrive at different sensor element with different delays. In the narrowband case, such delays reduce to phase shifts and are
e.g. contained in the covariance matrix R = E

{
x[n]xH[n]

}
∈ CM×M, where {·}H denotes Hermitian transposition and E {·} is

the expectation operator. In the case of linearly combining sensor signals to general an output with enhanced signal to noise
ratio over a single sensor signal, the output power can be formulated based on R. Optimisation of the weighting coefficients in
the mean square or least squares error sense then generally rests centrally on the eigenvalue decomposition (EVD) of R [1, 2]
or the singular value decomposition of the data matrix [3].

For broadband signals, the frequency-dependent phase shift of a signal is insufficient to preserve spatial information,
and we have to work with explicit delays. Therefore, the second order statistics are captured by the space-time covariance
matrix R[τ] = E

{
x[n]xH[n− τ]

}
∈ CM×M, with the discrete lag parameter τ embedding the required delay. With x[n] =

[x1[n], . . .xM[n]]T,

R[τ] = E
{

x[n]xH[n− τ]
}
=

 E {x1[n]x∗1[n− τ]} . . . E {x1[n]x∗M[n− τ]}
...

. . .
...

E {xM[n]x∗1[n− τ]} . . . E {xM[n]x∗M[n− τ]}

=

 rx1x1 [τ] . . . rx1xM [τ]
...

. . .
...

rxMx1 [τ] . . . rxMxM [τ]

 , (1)

and the cross-correlation

rxix j [τ] = E
{

xi[n]x∗j [n− τ]
}
= r∗x jxi

[−τ] , i, j ∈ {1, . . . ,M} , (2)

the space-time covariance satisfies the symmetry R[τ] = RH[−τ]. The z-transform of the space-time covariance matrix,
R(z) = ∑τ R[τ]z−τ , is the cross-spectral density (CSD) matrix of x[n], and now depends on z and is a matrix of Laurent
polynomials if of finite order, or Laurent series generally. The symmetry of R[τ] translates into R(z) satisfying the para-
hermitian property R(z) =RP(z), where parahermitian conjugate RP(z) =RH(1/z∗) implies a Hermitian transposition and
a time reversal [4]. This represents a generalisation of the Hermitian (or in the real-valued case symmetric) property of the
narrowband covariance matrix R = R[0] from above, and is also sometimes referred to as a palindromic matrix [5], or as a
self-adjoint matrix [6] when evaluated on the unit circle, z = ejΩ , whereR(ejΩ ) =RH(ejΩ ).

Using polynomial matrix notation, broadband problems can be formulated analogously to narrowband ones, including
applications such as optimum source coding [7], channel coding [8], optimum precoding and equalisation for multiple-input
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multiple-output systems [9, 10, 11, 12], angle of arrival estimation [13, 14, 15], broadband beamforming [16, 17, 18, 19], or
blind source separation [20]. These formulations then include the CSD matrix R(z); the utility of the EVD to diagonalise
narrowband covariance matrices and identify signal and noise subspaces does however not directly extend to the broadband
case. If the EVD is, say, applied to R[0], such that R[0] = QΛQH, then the unitary matrix Q will diagonalise R[τ] for τ = 0
but not simultaneously for τ 6= 0. Hence an extension of the EVD to the broadband case is required that diagonalises R[τ] for
all lags of τ , or that analogously diagonalises the CSD matrixR(z) for all z within its region of convergence.

If the CSD matrix R(z) is analytic, i.e. produced by a causal, stable scenario, then with the exception of multiplexed
data [21], it is possible to find a parahermitian matrix EVD (PhEVD)

R(z) =Q(z)Λ(z)QP(z); , (3)

where the analytic, diagonal Λ(z) contains the eigenvalues and the columns of the analytic, paraunitary Q(z) hold the eigen-
vectors ofR(z) [22]. Previously, the McWhirter decomposition [23, 24] defines a polynomial EVD (PEVD) that approximates
(3) as

R(z)≈U(z)Γ (z)UP(z) , (4)

where the factorsU(z) and Γ (z) are Laurent polynomial matrices, withU(z) paraunitary and Γ (z) diagonal. However, Γ (z)
will not necessarily approximate the analytic eigenvalues in Λ(z) but aims to provide a spectrally majorised solution, such
that forG(z) = diag{γ1(z), . . . ,γM(z)} evaluated on the unit circle,

γ1(ejΩ )≥ γ2(ejΩ )≥ . . .≥ γM(ejΩ ) (5)

holds, i.e. Γ (z) is spectrally majorised [25]. Both PhEVD and PEVD can at least approximately diagonaliseR(z), and hence
offer a route to solutions to the earlier stated broadband extensions to classical narrowband optimum solutions such as angle
of arrival estimation or beamforming.

The past decade has seen the development of a number of algorithms that generate the McWhirter decomposition,
which includes the second order sequential best rotation algorithm (SBR2 [23]) and the sequential matrix diagonalisation
(SMD) families of algorithms [26]. Various versions of SBR2 [7, 27] and SMD [28, 29, 30] have since emerged that enhance
convergence in one aspect or another. Additionally, the computational complexity of these algorithms has been addressed
by various means, including linear algebraic approximations of the EVD [31, 32], the truncation of large polynomials [33,
34, 35, 36], reduction of the optimisation parameter space [37, 38, 39, 40] as well as the exploitation of the symmetry of
R(z) [41], and the parallelisation of algorithms in [41, 42, 43, 44]. For the PhEVD in (3), and initial approximation has been
provided in [45, 46], with further developments that exploit the analyticity of the extracted solution for eigenvalues [47] and
eigenvectors [48], based in smoothness criteria in [49, 50].

The purpose of this paper is to provide an update on developments in the area of polynomial matrix decompositions
beyond [51] and provide an example application where a broadband solution by a simple extension of narrowband results.
Thus, Sec. 2 defines the signal model, the space-time covariance matrix, its parahermitian matrix factorisation and polynomial
approximation. Sec. 3 discusses the state of the art in PhEVD and PEVD algorithms. These are then applied to a Capon
beamforming problem, which is first introduced for the narrowband case and then is extended to the broadband scenario in
Sec. 4. Conclusions and an outlook to emerging applications are given in Sec. 5.

2. Broadband Signal Model,Cross Spectral Density, and Parahermitian Matrix EVD
2.1. Signal Model and Cross Spectral Density

We assume that the measurements in x[n] are generated by L sources s`[n], which are convolutively mixed by an M×L
mixing matrix H[n], as shown in Fig. 1. The power spectral densities Rs`(z) of these sources can be explain via an innovation
filter [52] g`[n] with z transform G`(z) = ∑n g`[n]z−n, or short G`(z) •—◦ g`[n], such that Rs`(z) = G`(z)GP

`(z). Thus, we have
for the CSD matrix

R(z) =H(z)diag{Rs1(z), . . . ,RsL(z)}HP(z) =H(z)G(z)GP(z)HP(z) , (6)

where H[n] ◦—•H(z) : C−→CM×L andG(z) = diag{G1(z), . . . ,GL(z)} : C−→CL×L. The product on the r.h.s. of (6) only
formally looks like (3); note however that the factorH(z) in (6) is unconstrained, whileQ(z) is parahermitian.

2.2. Parahermitian Matrix EVD
Since in a real measurement system, all components ofH(z) andG(z) must be causal and stable,R(z) will be analytic

at least on a disc including the unit circle. Therefore, the parahermitian matrix EVD in (3) exists for almost all cases [22, 21].
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Fig. 1: Source model of measurements xm[n], m = 1, . . . ,M, with convolutive mixing matrix H[n] and source signals s`[n], ` = 1, . . . ,L,
which are generated by innovation filters g`[n] from uncorrelated zero-mean unit-variance Gaussian signals u`[n].
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Fig. 2: (a) Analytic vs (b) spectrally majorised selection of eigenvalues.

A simple proof rests on the generalisation of Rellich’s EVD [53], where analytic eigenvalues and -vectors are guaranteed to
exist for some analytic self-adjoint matrixA(t) for t ∈ R.

One specific class of parahermitian matrices R(z) does not a factorisation into analytic components. When evaluated
on the unit circle R(ejΩ ) is 2π-periodic in Ω . However, the same cannot be guaranteed for the EVD factors. If R(ejΩ )
can be traced back to pseudo-circulant components, which is the case for multiplexed data [4], then the periodicity of these
factors will be 2πN with some N ∈N [21]. As a result, the factors are not analytic, and do not exist as realisable components.
However, a spectrally majorised approximation can still be undertaken [21].

To highlight the difference between the analytic eigenvalues in Λ(z) of (3) and the spectrally majorised ones in Γ (z)
of (4), consider the analytic eigenvalues λ1(ejΩ ) = 1+ cosΩ and λ2(ejΩ ) = 1+ sinΩ . Both functions could be permuted at
any frequency Ω and still be valid eigenvalues, provided that they retain a 2π-periodicity. Apart from the analytic selection
λ1(ejΩ ) and λ2(ejΩ ) depicted in Fig. 2(a), an important alternative are the spectrally majorised eigenvalues γ1(ejΩ ) and γ2(ejΩ )
in Fig. 2(b), where spectral majorisation implies that λ ′1(e

jΩ )≥ λ ′2(e
jΩ ) ∀Ω [25] as formulated in (5).

The solutions for the PhEVD in (3) and the PEVD in (4) will be equivalent, i.e. analytic eigenvalues will be spectrally
majorised, if the analytic eigenvalues to no intersect on the unit circle. This means that the λm(ejΩ ), m = 1, . . . ,M do not
possess any algebraic multiplicities greater than one at any frequency Ω .

If on the unit circle eigenvalues have algebraic multiplicities greater than one, as in Fig. 2 for Ω = π

4 and Ω = 5π

4 , then
the analytic selection in Λ(z) will not be spectrally majorised. Since only analytic functions are absolutely convergence, the
spectrally majorised solution in (4) will need to approximate non-differentiable functions. This requires approximations with
polynomials of significantly higher order than for the analytic eigenvalues, which impact on the computational cost of any
application of this function.

Note that a spectrally majorised selection requires a permutation of the analytic eigenvalues, and therefore also implies
a permutation of the analytic eigenvectors. Since the latter are orthogonal, a permutations leads to a discontinuity. Hence
for a non-analytic selection, the approximation of discontinuous functions for the eigenvectors may require an even higher
order than the approximation of non-differentiable functions in case of the eigenvalues. Hence it is hope that a shift from
SBR2 and SMD algorithms, which encourage or can even be shown to converge to spectrally majorised solutions in case of
SBR2 [54] towards the extraction of analytic solutions will significantly reduce computational complexity. Some features of
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Fig. 3: Comparison of the extracted eigenvalues using (a) [45] and (b) [47].

these algorithms will be illuminated in the following section.

3. Algorithms for the Approximation of PEVD and PhEVD
Several algorithms targetting the McWhirter decomposition in (4) have emerged over the past decade [7, 23, 24, 26, 27,

28, 30, 45, 55, 56]. Most of these operate in the time domain, and iteratively shift energy from the off-diagonal components of
R(z) onto the diagonal through a combination of delay operations and Givens rotations (in case of the SBR2 family [7, 23, 24,
27]) or through EVD [26, 28] or Householder transformations [30] in case of the SMD family. These algorithms iteratively
reduce off-diagonal energy and can be proven to converge, even though it had not been clear to what solution. In case
of SBR2, algorithms have also been shown to converge to a spectrally majorised solution [54], while for SMD algorithms
spectral majorisation is generally achieved but yet unproven for any of its algorithms. In contrast to these iterative time-
domain methods, in [55, 56] a fixed-order approximation is attempted by elementary paraunitary operations [4], while [45]
has proposed a DFT-domain approach which also operates with a fixed order for its solution to (4).

The approach by Tohidian et al. [45] has been the first to extract maximally smooth — and therefore ideally the
analytic — eigenvalues and -vectors. Their algorithm operates in the DFT domain, where an EVD is calculated in each bin.
Working in independent frequency bins, though, the coherence is lost, and an association across successive frequency bins
has to be established in order to extract M eigenvalues and -vectors from R(z) : C −→ CM×M. This association is driven
by the bin-wise eigenvectors. However, in case if a Q-fold multiplicity of eigenvalues, the associated eigenvectors can form
an arbitrary basis in a Q-fold subspace; similarly, for closely-spaced eigenvalues, the calculation of individual eigenvectors
may therefore be ill-conditioned [57, 46, 48]. The approach in [47] therefore establishes associations across frequency bins
solely based on the eigenvalues, driven by a smoothness criterion of the interpolated functions [49, 50]. Additionally, the
DFT-length is iterative adjusted until an approximation error is minimised.

As an example, Fig. 3 provides an comparison of [45] and [47] for a matrix R(z) : C −→ C3×3 with the following
known ground-truth analytic eigenvalues:

λ1(z) =
1
4

z2 +
1
2
+

1
4

z−2
λ2(z) =−

1
4

z1 +
1
2
− 1

4
z−1

λ3(z) =−j
1
4

z1 +1+ j
1
4

z−1 . (7)

The CSD matrix possesses an algebraic multiplicity of Q = 3 at Ω = π , where the algorithm in [45] may be misled, since only
adjacent bins of the ill-conditioned eigenvectors are inspected, resulting in the extracted eigenvalues λ ′(z) shown in Fig. 3(a).
Picking an incorrect continuation at Ω = π ultimately leads to two of the eigenvalues approximating discontinuous functions
at Ω = 2π . In contrast, the result of [47] in Fig. 3(b) matches the analytic solution.

Enforcing spectral majorisation in the case of an algebraic multiplicity greater than one as shown in Fig. 2 leads to
eigenvalues that are not infinitely differentiable and to eigenvectors with discontinuities [22, 51]. Current PEVD approaches
based on the SBR2 and SMD algorithm families either empirically encourage or, in case of SBR2, can be shown to yield
spectrally majorised eigenvalues [54]. Thus, they result generally can result in matrix factors of high polynomial orders to
approximate the McWhirter decomposition in (4). Even though some mechanisms to curb the polynomial order of these
factors have been suggested [33, 34, 23, 35, 36], these are generally truncation-based and therefore potentially impact on
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Fig. 4: Comparison of the order of extracted eigenvalues using SBR2 [23], SMD [26], and the method for analytic eigenvalues in [47].

the approximation error in (4). This matters, because he polynomial order of any extracted factors directly related to com-
putational cost. The paraunitary matrices Q(z) and U(z) in (3) and (4) represent lossless filter bank [4], whose order is the
order of filter bank required to e.g. provide a required subspace projection afforded by (3) and (4). Hence the extraction of
factorisation with fundamentally lower order is important.

Since analytic solutions produce factors that in the time domain are absolutely convergent, they can generally be easily
approximated by Laurent polynomials. As a result, approximations of the PhEVD in (3) yields factors of considerably lower
order compared to algorithms that target (4) with its enforced spectral majorisation. For a simulation using 50 parahermitian
matrices R(z) : C−→ C4×4 are generated from a randomised matrix A(z) : C−→ C4×4 with normally distributed entries of
order 10 viaR(z) =A(z)AP(z). The order of factorisations to comparable approximation orders using SBR2 [23], SMD [26],
and the approach in [47] are shown in Fig. 4, and highlight the order reduction by approximately one order of magnitude by
the extraction of analytic eigenvalues.

4. Capon Beamformer
To demonstrate the polynomial approach for a sample broadband multi-sensor problem, we first introduce a standard

narrowband problem, which is then generalised together with its classical narrowband solution. As an exemplar application,
we target the Capon beamformer [58, 2].

4.1. Narrowband Problem and Solution
Given is an array of sensors generating measurements x[n] ∈ CM, and a set of weights w ∈ CM to perform a linear

combination. The result of this linear combination, e[n] = wHx[n] should be minimised in the mean square error sense,
subject to constraints that preserve the gain in look direction and null interferers whose angle of arrival is known. If a source
signal s` arrives at the mth sensor with a delay τm,`, then the direction of this source is characterised by a narrowband steering
vector

a` =
1√
M

[
ejΩτ1,` , ejΩτ2,` , . . . , ejΩτM,`

]T
, (8)

such that at a particular narrowband frequency Ω , the delays simplify to phase shifts. Thus, for L known sources, whereby
the first source, `= 1, is assumed to be the signal of interest while the remaining sources are seen as interferers, the problem
can be formulated as a minimum variance distortionless response (MVDR) problem

wopt = argmin
w

E
{
|e[n]|2

}
= argmin

w
wHR(ejΩ )w , s.t. wH [a1, a2, . . . , aL]︸ ︷︷ ︸

C

= [0, 1, . . . ,0︸ ︷︷ ︸
L−1

] = fH . (9)

With the MVDR setup, up to L=M−1 interfering sources can be suppressed. Any remaining degrees of freedom are invested
such that unknown structured interferers and omnidirectional noise are minimised in the mean square error sense.

The Capon solution to (9) can be obtained by constrained optimisation e.g. via Lagrange multipliers, such that [58, 59]

wopt =R
−1(ejΩ )C

(
CHR−1(ejΩ )C

)−1
f , (10)

and is well-known for the narrowband case. Because the error e[n] = wHx[n] is formulated via the Hermitian transposition, w
holds the complex conjugate record of the actual weights.
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4.2. Broadband Problem and Solution
In the broadband case, tap-delay line processing of the sensor signals is required in order to formulate explicit delays,

and the linear combination is now performed by filters wm[n], m = 1, . . . ,M, the operate on each sensor signal xm[n]. We first
demonstrate how the problem formulation in (9) generalises to the broadband case. For this, the complex conjugate record of
weights generalises to a parahermitian record, such thatwP(z) = [w1[n], . . . , wm[n]]. The mean square error is obtained in the
frequency domain by integrating over the PSD, such that [18]

wopt(z) = argmin
w(z)

∮
|z|=1

wP(z)R(z)w(z)
dz
z

, s.t. wopt(z)C(z) = fP(z) , (11)

with the constraint equation now made up of broadband steering vectors

a(z) =
1√
M

[ d[n− τ1] d[n− τ2] . . . d[n− τM] ] , (12)

where d[n− τ] is a fractional delay filter with τ ∈ R [60, 61]. In case of L−1 interferers, we have

C(z) = [a1(z),a2(z), . . .aL(z)] and fP(z) =
[
F1(z), 0, . . . , 0︸ ︷︷ ︸

L−1

]
, (13)

where F1(z) is the desired transfer function in look direction. Note that when evaluated at a specific frequency Ω and for
F1(z) = 1, the broadband steering vector in (12) collapses to the narrowband one defined in (8). The same applies to the entire
problem formulation. For the broadband Capon beamformer, the narrowband solution simply generalises to [19]

wopt(z) =R−1(z)C(z)
[
CP(z)R−1(z)C(z)

]−1
f(z) . (14)

This requires the inversion of polynomial matrices, which can be computed via the PEVD or PhEVD [62].

5. Conclusions
This paper has summarised efforts in the area of polynomial matrices to formulate broadband multi-sensor problems,

and find solutions to these formulations by means of generalising narrowband solutions. This typically requires the applica-
tion of polynomial matrix decompositions, particularly the parahermitian (PhEVD) and polynomial matrix EVDs (PEVD).
For these, algorithmic efforts have been reviewed, with the main focus currently directed to extracting analytic eigenvalues
and -vectors that afford lower-order polynomial approximations than the state-of-the-art in PEVD approaches with proven
convergence. Important future developments also target the estimation of space-time covariance [63, 64, 65], since the statis-
tics typically have to be estimated from finite data sets, and interesting new applications where the polynomial approach
permits solutions that were previously unobtainable, such as in the area of impulse response modelling [66] or speech en-
hancement [67].
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