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Abstract – Parallel algorithms are implemented to compute the solutions of partial differential equations and ordinary differential 

equations of complex dynamical systems to achieve near real-time solutions. One of the parallel algorithms widely implemented is the 

Parareal algorithm to solve time-dependent differential equations for various scientific applications. Parareal algorithm has shown 

promising speedups in achieving near real-time solutions using accelerators.  However, it has been observed that the sequential predictor-

corrector step of the Parareal algorithm impacts the computational performance. This paper analyses the Parareal algorithm and proposes 

modification to the predictor-corrector step of the Parareal algorithm to exploit data parallelism more and reduce the computation time.  

The modified algorithm is implemented to solve two systems of interdependent ODEs. The numerical accuracy and performance analysis 

of the modified algorithm is shown to be same as the original Parareal. The performance analysis of the modified algorithm on two 

accelerator computing architectures: Intel Xeon Phi CPU and Graphical processing units with OpenMP, OpenACC, and CUDA 

programming models are presented. The modified algorithm demonstrates performance improvement ranging from 1.2x-2x with respect 

to the original Parareal algorithm.  
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1. Introduction 
Time-domain simulations are performed to analyse the stability and response of complex dynamical systems to external 

disturbances that are mathematically represented by time-dependent partial differential equations (PDEs) or ordinary 

differential equations (ODEs). A system of time-dependent PDEs or ODEs is typically solved to obtain an approximate 

solution using a suitable numerical integration method that is an inherently sequential process. Hence, solving a large system 

of ODEs or PDEs is a computationally intensive problem and is often performed offline. With recent advancements in high-

performance computing (HPC) resources and parallel algorithms based on domain decomposition techniques, it is possible 

to solve the compute-intensive problem much faster than the traditional methods with a near real-time solution. 

One of the domain decomposition techniques widely used for solving time-dependent ODEs in parallel is temporal 

domain decomposition (TDD). TDD, also known as the parallel-in-time technique achieves parallelization across the time 

domain. This method solves a single time-dependent PDE or ODE by decomposing the entire simulation time into small 

intervals to solve in parallel using computing cores. In recent years, several parallel-in-time algorithms are developed that 

are suitable for modern-day HPC platforms namely: Parareal algorithm (PRA) [1], parallel in time algorithm (PITA) [2], 

parallel full approximation scheme in space and time (PFASST) [3], revision deferred corrections [4] and space-time 

multigrid methods [5].  

This paper focuses on PRA. PRA is used for solving PDEs/ODEs of various applications in the scientific community 

like quantum chemistry [6], finance [7], neuroscience [8], hydrodynamic simulations [9], and many more. In the research 

work [10] [11], we have demonstrated the PRA's performance on two different computing architectures, the Intel Xeon Phi 

and GPU accelerators. The results demonstrated that a significant amount of time is spent in the sequential steps of the 

algorithm impacting the overall performance for compute-intensive problems.  

To improve the computational efficiency by reducing the computational time of the PRA, multiple approaches were 

investigated. The computational performance of the PRA is dependent on how fast the coarse propagator can compute the 

solution sequentially and how fast the fine propagator computes the solution in parallel. In [12], the authors propose the use 

of the reduced basis method to provide a computationally inexpensive coarse propagator. In [13], a macro-micro PRA is 
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proposed. A high dimension microscopic model is solved using a fine propagator whereas the coarse propagator is an 

integrator of a low dimension approximate macroscopic model. The authors in [14] demonstrate the use of different 

numerical integrator methods for coarse and fine propagators that potentially improve the computational performance. A 

simplified generator model was used for the coarse propagator in addition to different numerical integrator methods in [15] 

to reduce the sequential computational time. The authors in [16] demonstrated a learned coarse propagator of the PRA for a 

predictive model in a robot manipulation task involving multiple objects to reduce the computational time. 

The methods explored and investigated to improve computational speedup of PRA are by using simpler physics models 

at the coarse propagator stage or learned coarse propagator using the deep learning approach. However, the predictor-

corrector step of the PRA is still a sequential step. In this paper, we propose the modified PRA that combines the sequential 

predictor-corrector step of the PRA to reduce the computational burden caused by the sequential steps. With the proposed 

modification to the PRA, we can exploit the data parallelism and achieve better computational performance with the same 

numerical accuracy as the original PRA implementation. We demonstrate the modified PRA’s performance on Intel Xeon 

Phi and GPU accelerators along with a multi-core Intel Xeon processor using OpenMP, OpenACC, and CUDA programming 

models. 

The paper is organized as follows: Section 2 discusses the modification of the PRA for better performance improvement 

and data parallelism. In section 3, the implementation details, numerical and performance results are presented. Section 4 

presents the discussion and conclusion. 

 

2. Modified Parareal Algorithm 
In PRA, the entire simulation time is decomposed into small subintervals with two time steps ΔT and δt as shown in 

figure 1. Each subinterval is then solved in parallel with some initial condition. A computationally inexpensive numerical 

integrator provides these initial conditions for the intervals with a less accurate solution with time step ΔT. The small sub-

intervals are solved independently in parallel to obtain a more accurate solution of the differential equation with time step δt 

<< ΔT. The algorithm has three major steps with two numerical operators namely coarse (GΔT) and fine (Fδt ) propagators 

shown in equations 2 and 3, respectively, operated on the same initial conditions 𝑢0 to compute the solution of a system 

time-dependent ODEs presented in equation 1.  

𝑢
.

= 𝑓(𝑢, 𝑡), 𝑡 ∈ [0, 𝑇] (1) 

 

𝑈�̃� = 𝐺𝛥𝑇(𝑇𝑛−1, 𝑈𝑛−1̃ , 𝛥𝑇), 𝑈0̃ = 𝑢0 (2) 

  

𝑈�̂� = 𝐹𝛿𝑡(𝑇𝑛−1, 𝑈𝑛−1̂ , 𝛿𝑡), 𝑈0̂ = 𝑢0 (3) 

 
Fig 1. Time domain decomposition 

 

In figure 2, the pseudocode for the original PRA is shown. The first and third steps are executed sequentially, while only 

the second step is executed in parallel. The first step is executed only once to get the initial coarse values. Steps two and 

three are iterated continuously to obtain the solution matching the sequential solution within the desired tolerance.  At the 

end of the first iteration, the solution at T1 gets corrected to the fine solution. Similarly, at the kth iteration, the solution at 

Tk gets corrected to its respective fine solution. The algorithm is analysed to exploit additional parallelism since only step 2 

is parallelizable. On further analysis in the predictor-correct step, the difference 𝑈𝑛
�̂� − 𝑈𝑛

𝑘−1̃ can be parallelized since we 

already have the values of 𝑈𝑛
𝑘−1̃ from the previous iteration, but 𝑈𝑛

�̃� needs to be calculated, which is a sequential process. 
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The results in [10] [11] showed that a significant amount of time is spent on the predictor step computing 𝑈𝑛
�̃� values. This 

step impacted the overall performance of the original PRA and showed poor scaling when implemented on many-core and 

multi-core architectures for a system of inter-dependent ODEs. Therefore, we propose to modify the predictor-corrector step 

of the PRA algorithm to reduce the sequential computational overhead. 

 

              
Fig 2. Pseudocode of the original PRA [17]     Fig 3. Pseudocode of the modified PRA  

 

In figure 2, for each iteration, 𝑈0
𝑘 is initialized to the initial condition 𝑦0. In the predictor step, the same initial condition 

is used to generate the coarse values 𝑈𝑛
�̃�  sequentially for 1 ≤ 𝑛 < 𝑁. Since the initial condition is the same, the predictor 

value 𝑈𝑛
�̃� in each iteration remains the same. The predictor value is the same as the initial coarse propagator solution obtained 

in step 1. Therefore, we can eliminate this step in the predictor-corrector method and combine the second for loop in the 

PRA iterations with the first for loop, as shown in figure 3. From the pseudocode in figure 3, it is now possible to parallelize 

the PRA iterations since there is no data dependency. Also, the original PRA algorithm is now reduced to only two steps.  

 Step 1 is the initial coarse propagator solution, which computes all the 𝑈𝑛
𝑘 coarse values for 1 ≤ 𝑛 < 𝑁 sequentially.  

 Step 2 consists of the fine propagators and the corrector, which can be performed in parallel. In the predictor-corrector 

step, the predictor is eliminated, and only the corrector is retained. The fine values are corrected at the end of each 

iteration. 
The numerical accuracy is the same as the original PRA algorithm. At the end of the first iteration, the solution at T1 

gets updated to the fine solution, at the end of the kth iteration, the coarse value at Tk gets updated to the fine solution. 

Another important modification done is the number of iterations performed in the inner for loop of the original PRA 

iterations. In pseudocode 1, the inner for loops in the original PRA iterations performs computation even for already 

computed values. In the modified PRA pseudocode, computation is done only for the values for which the fine solution needs 

to be done. At the end of the first iteration, the solution at T1 gets corrected to the fine solution. In the next iteration, i.e., the 

second iteration, the computation begins from T1 as the initial condition instead of T0 since we have already obtained the 

corrected solution for time T1. Similarly, for iteration 3, the computation starts with the initial condition at T2 instead of T0. 

This way, we are computing the solutions required for the correction and do not re-compute the corrected solutions. 

𝑈0
0  ⟵ 𝑈0

0̃ ⟵ 𝑦0  //initial condition for iteration 0  

for n = 1 to N do 

𝑈𝑛
0̃ ⟵ 𝐺Δ𝑇(𝑈𝑛−1

0̃ ) 

𝑈𝑛
0  ⟵ 𝑈𝑛

0̃ 

end for 

// PRA iterations 

for k=1 to kmax do 

 𝑈0
𝑘  ⟵ 𝑦0 

for n=1 to N do  

𝑈𝑛
�̂� = 𝐹𝛿𝑡(𝑈𝑛−1

𝑘−1) 

end for 

 

for n=1 to N do  

         𝑈𝑛
�̃� ⟵ 𝐺Δ𝑇(𝑈𝑛−1

𝑘 ) 

𝑈𝑛
𝑘 ⟵  𝑈𝑛

�̂� + 𝑈𝑛
�̃� − 𝑈𝑛

𝑘−1̃ 

end for 

if |𝑈𝑛
𝑘 − 𝑈𝑛

𝑘−1|  ∈ ∀ n then 

BREAK // loop is terminated if converged  

    end if 

end for 

 
 

 

𝑈0
0  ⟵ 𝑈0

0̃ ⟵ 𝑦0 //initial condition 

  

for n = 1 to N do 

𝑈�̃� ⟵ 𝐺Δ𝑇(𝑈𝑛−1
0̃ ) 

𝑈𝑛
0  ⟵ 𝑈𝑛

0̃ 

end for 

 

// PRA iterations 

for k=1 to kmax do 

      for n=k to N do  

 𝑈𝑛
�̂� = 𝐹𝛿𝑡(𝑈𝑛−1

𝑘−1) 

𝑈𝑛
𝑘 ⟵  𝑈𝑛

0̃ + 𝑈𝑛
�̂� − 𝑈𝑛

0̃ 

      end for 

 

       if |𝑈𝑛
𝑘 − 𝑈𝑛

𝑘−1|  ∈ ∀ n then 

BREAK // loop is terminated if converged  

       end if 

end for 

Step 1: Coarse 

propagation (Sequential) 

 

Step 2: Fine 

propagation (parallel)  

Step 3: 

Predictor-

Corrector 

(sequential) 

Step 1: Coarse 

propagation (Sequential) 

 

Step 2: Fine 

propagation 

with corrector 

(parallel) 
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3. Implementation and Results 
The modified PRA is implemented for two systems of ODEs mathematically modeling the dynamic behaviour of a 

synchronous generator of a power system. 

 Case 1: In this case, we consider the classical model of a synchronous generator that is mathematically modeled in 

equations 4 and 5. The two time-dependent ODEs represent the rotor angle δ and angular velocity ω respectively. 

 

𝑑𝛿

𝑑𝑡
= 𝜔 − 𝜔𝑠 = ∆𝜔 (4) 

𝑑∆𝜔

𝑑𝑡
=

𝜋𝑓0𝑃𝑎

𝐻
 (5) 

Where, H is the inertia constant (MJ/MVA), Pa is the accelerating power, fo is the nominal frequency, 𝜔𝑠 = 2𝜋𝑓𝑜 is the 

rated angular speed, δ is the rotor angle.𝜔 =
𝑑𝛿

𝑑𝑡
 is the relative speed or angular velocity with respect to the synchronously 

revolving magnetic field (reference frame) 

 Case 2: In this case, we consider the fourth-order mathematical model of a synchronous generator shown in equations 6 

to 9. This model consists of four time-dependent ODEs addressing the direct and quadrature axis parameters of the 

synchronous generator. 

𝑑𝛿

𝑑𝑡
= 𝜔 − 𝜔𝑠 = ∆𝜔 (6) 

 𝑇𝑑0
′

𝑑𝐸𝑞
′

𝑑𝑡
= −𝐸𝑞

′ − (𝑋𝑑 − 𝑋𝑑
′ )𝑖𝑑 + 𝐸𝑓𝑑 (7) 

𝑇𝑞0
′

𝑑𝐸𝑑
′

𝑑𝑡
= −𝐸𝑑

′ + (𝑋𝑞 − 𝑋𝑞
′ )𝑖𝑞 (8) 

𝐻

𝜋𝑓𝑜

𝑑𝜔

𝑑𝑡
= 𝑇𝑚 − 𝑇𝑒 − 𝐷(𝜔 − 𝜔𝑠) (9) 

  

Where, 𝐸𝑑
′ and 𝐸𝑞

′  are the transient voltages along direct (d) and quadrature (q) axis respectively of the generator, 𝑖𝑑and 

𝑖𝑞are the stator currents of the d and q axis respectively, D is the damping constant, 𝑋𝑑and 𝑋𝑞are the d and q axis synchronous 

reactances respectively, 𝑋𝑑
′ and 𝑋𝑞

′ are the d and q transient reactances respectively, 𝑇𝑑0
′ and 𝑇𝑞0

′ are the open-circuit transient 

time constants for d and q axes, 𝑇𝑚and 𝑇𝑒are the mechanical and electrical torques, respectively. 

 

3.1 Numerical Results 
The time domain simulations of the test systems discussed in [10] is performed using the modified PRA implementation. 

In figures 4a and 5a, the variation of the rotor angle for cases 1 and 2 are presented. The numerical solution of the rotor angle 

obtained using the modified PRA is compared with the numerical solution obtained using the traditional sequential and the 

original PRA methods in figures 4a and 5a. It can be observed in figures 4a and 5a, the rotor angle variation of the modified 

PRA is very close to the Original PRA and sequential methods. In figures 4b and 5b, the difference in the rotor angle 

computed using the modified and the original PRA algorithms in reference to the sequential computation are shown. It can 

be seen that the rotor angle error of the modified and the original PRA is same demonstrating the numerical accuracy of the 

modified PRA.  

 



 

 

 

 

 

 

 

EEE 110-5 

                   
a) Rotor Angle variation comparison                                b) Rotor Angle variation error 

Fig 4. Time domain Simulations for Case 1 

 

           
a) Rotor Angle variation comparison                                b) Rotor Angle variation error 

Fig 5. Time domain Simulations for Case 2 

 

3.2 Performance Results 
The performance of the modified PRA is analyzed by collecting the parallel runtime to compute the numerical solutions 

for cases 1 and 2. The modified PRA is implemented using OpenMP, OpenACC, and CUDA programming models across 

homogeneous and heterogeneous computing platforms. The homogeneous computing architecture comprises of Intel 

Xeon processor codenamed Haswell (HSW) and Xeon phi accelerator Knights Landing (KNL) while the 

heterogeneous computing architecture consists of Nvidia GPUs [11]. . The optimization techniques presented in 

[11] are used in the implementation of the modified PRA. The homogenous architecture parallel runtime of the 

modified PRA is given in equation 10 addressing the modifications to the parallel runtime of the original PRA 
[11].  

𝑇𝑃𝑅𝐴𝑚
𝐶𝑃𝑈 = 𝑡𝑐 + ∑(𝑡𝑓𝑐𝑟)

𝑁

𝑖=1

 (10) 

  In equation 10, 𝑡𝑐 is the computation time of the coarse propagator, 𝑡𝑓𝑐𝑟 is the computation time for the fine propagator 

with the corrector, 𝑁 is the number of PRA iterations. 

The parallel runtime for the modified PRA implementation using GPUs is given in equation 11. 

𝑇𝑃𝑅𝐴𝑚
𝐺𝑃𝑈 = 𝑡𝐻

𝑐 + ∑(𝑡𝐻
𝐺 + 𝑡𝐺

𝑓𝑐𝑟
+ 𝑡𝐺

𝐻)

𝑁

𝑖=1

 (11) 
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Where, 𝑡𝐻
𝑐  is the computation time of the coarse propagator on the host, 𝑡𝐻

𝐺  is the memory transfer latency between the 

host and the GPU, 𝑡𝐺
𝑓𝑐𝑟

 is the computation time of the fine propagators with corrector on the GPU, 𝑡𝐺
𝐻 is the memory transfer 

latency between the GPU and the host, 𝑁 is the number of iterations. The performance of the modified-PRA is compared 

with the original PRA using the achieved speedup with varying number of fine propagators.  

In table 1, the sequential and parallel runtime of sequential, original and modified PRA for case 1 with varying 𝑁𝑓 on 

different computing architectures and programming models are presented. The smallest execution time is achieved for 

OpenMP implementation of modified PRA on KNL. For all hardware architectures, and programming models, the parallel 

runtime of the modified PRA is reduced in comparison to the original PRA. The performance of the modified PRA on the 

GPU with CUDA and OpenACC is lower in comparison to KNL due to lower occupancy (computations performed by each 

thread is small) of the GPU.  

 
Table 1: Sequential and parallel runtime for Case 1. 

 

 𝑁𝑓 

 

Sequential 

(ms) 

Original PRA (ms) Modified PRA (ms) 

OpenMP-

HSW 

OpenMP-

KNL 

OpenACC-

GPU 

CUDA-

GPU 

OpenMP-

HSW 

OpenMP-

KNL 

OpenACC-

GPU 

CUDA-

GPU 

128 1.78 0.19 0.09 0.27 0.18 0.122 0.059 0.22 0.177 

256 3.59 0.25 0.11 0.358 0.24 0.186 0.073 0.23 0.2 

512 7.1 0.45 0.196 0.38 0.28 0.346 0.123 0.256 0.224 

 

In figure 6, the speedup comparison for modified PRA and original PRA implementations are presented. The modified-

PRA implemented on KNL using OpenMP achieves the best performance with a speedup of 57x and 31x on the GPU using 

CUDA. The lower speedup with GPU is mainly due to the underutilization of the GPU resources due to a fewer number of 

equations of case-1 being solved. The modified and original PRA both executing on the GPU exhibit a strong scaling 

efficiency. In general, the modified PRA speedup improvement with respect to the original PRA ranges from 1.2x to 1.7x. 
  

 
Fig 6. Speedup w.r.t sequential runtime for Case 1 

 

In table 2, the sequential and parallel runtime for original and modified PRA for case-2 with varying 𝑁𝑓 on different 

computing architectures and programming models are presented. The execution time of the modified PRA on the GPU with 

CUDA and OpenACC is significantly less compared to that on HSW/KNL with OpenMP for larger values of  𝑁𝑓 increases, 

the execution time difference between the CPU and GPU implementations increases significantly. This is due to the massive 

number of cores available on GPUs in comparison to a CPU and KNL accelerator. The other significant difference that can 

be observed is the total execution time for KNL. For the original PRA, the execution time for KNL was more than HSW for 

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600

S
p

e
e
d

u
p

Number of Fine Propagators

OpenMP-HSW (Original-PRA) OpenMP-KNL (Original-PRA) OpenACC-GPU (Original-PRA)

CUDA-GPU (Original-PRA) OpenMP-HSW (Modified-PRA) OpenMP-KNL (Modified-PRA)

OpenACC-GPU (Modified-PRA) CUDA-GPU (Modified-PRA)



 

 

 

 

 

 

 

EEE 110-7 

higher 𝑁𝑓due to the sequential predictor-corrector step. Since the KNL processor clock speed is lower compared to the HSW, 

the time taken to compute the coarse values sequentially was significantly high compared to HSW. This impacted the overall 

execution time, and KNL performed poorly. However, in the modified PRA, with the elimination of the sequential predictor-

corrector method, the performance of KNL has improved significantly, and the execution time is lower than the HSW. Also, 

the performance of OpenACC and CUDA has improved significantly compared to original PRA implementations. 

 
Table 2: Sequential and parallel runtime for Case 2. 

 

 𝑁𝑓 

 

Sequential 

(ms) 

Original PRA (ms) Modified PRA (ms) 

OpenMP-

HSW 

OpenMP-

KNL 

OpenACC-

GPU 

CUDA-

GPU 

OpenMP-

HSW 

OpenMP-

KNL 

OpenACC-

GPU 

CUDA-

GPU 

2560 40.786 2.57 2.21 2.23 1.88 2.12 1.15 1.41 1.23 

5120 72.57 4.55 4.425 3.04 2.73 3.72 2.192 2.04 1.80 

12800 159.67 8.62 11.05 6.14 5.043 6.88 5.36 4.13 3.87 

25600 289.96 15.97 22.02 13.39 9.714 12.24 10.67 7.29 6.80 

In figure 7, the speedup achieved with the modified and the original PRA is shown. It can be seen there is an 

improvement in the speedup across the different platforms. The range of improvement is 1.3x to 2x. KNL and OpenACC 

implementation have maximum improvement with the CUDA implementation exhibiting overall best performance. This 

shows that the GPUs perform better when the problem is compute-intensive and has more work for each thread. Also, the 

performance of OpenACC is very close to CUDA. However, the scaling efficiency of the modified PRA is still weak, and 

similar to the original PRA.  

 

 
Fig 7. Speedup w.r.t sequential runtime for Case 2 

 

4 Discussion and Conclusion 
In this paper, we have proposed the modified PRA to reduce the computation burden caused by the sequential steps of 

the PRA. In the proposed algorithm, we eliminate the sequential predictor-corrector step of the PRA by combining the 

corrector with the fine propagator step. The modified PRA showed an improvement between 1.2x -2x for the system of 

ODEs demonstrated in this paper. However, not much improvement in the scaling efficiency was observed and a weak 

scaling efficiency is noticed for the four time-dependent ODEs. Traditionally, the approach to improve weak scaling after 

algorithm optimization is to use additional hardware and software resources. The additional software resource can be 

incorporated using task parallelism. Task parallelism involves parallelizing the computations of each system of ODEs by 

distributing the computations spatially. In the case of CPUs, the task parallelism would involve distributing the PRA 
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computations across multiple nodes using the message passing interface (MPI) programming model. In the case of GPUs, 

the task parallelism can be achieved by implementing multiple streams on a single GPU initially, and later distributing the 

computations across multiple GPUs and nodes using the MPI programming model. If the ODEs are not interdependent, i.e., 

do not need an exchange of information during the time evolution, task parallelism will improve the scaling. The ODEs of 

the complex systems usually being interdependent will require an exchange of information that will introduce significant 

communication latencies between GPUs in a node and between nodes, further weakening the scaling. Therefore, the 

maximum possible reduction in running time while computing the solutions of interdependent ODEs using PRA on current 

HPC hardware and programming models has been achieved. 
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