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Abstract - The emergence, under the pressure of the ASICs imposed by the corporate space, of the field of Accelerator-Level Parallelism 

(ALP) requires a theoretical analysis to avoid the slippages that have characterized the evolutions of the last decades in the field of parallel 

computing. Ad hoc solutions imposed under time-to-market pressure have distorted the evolution of the field of parallel computing. The 

opportunity offered by the ALP challenge must be used to make last minute corrections in the chaotic evolution of the development of 

the parallel computing domain. The solution we propose is an attempt to reconsider parallelism from a double perspective. A purely 

theoretical one based on a mathematical model, that of the partially recursive functions proposed by Stephan Kleene, and another that 

emerges under the pressure of the increasingly complex applications demanded by the IT market. Our proposal consists in the hierarchical 

recursive structuring of ALP starting from the abstract MapScanReduce model that we have already proposed for the parallel computing. 
 

Keywords: accelerator-level parallelism, heterogenous computing, parallel computing, accelerators, abstract model for 

parallelism. 

 

 

1. Introduction 
Heterogeneous computing is a consequence of the need to optimize, in terms of silicon area and energy consumed, SoCs 

running increasingly complex applications that require more and more intense computing. The complexity and intensity of 

the computation suppose a heterogeneous computing system in which the complex computation, executed on a host, can be 

segregated from the intense one, executed on one or more accelerators.  

A lot of examples can be given in which the area of a SoC is dominated by accelerators that operate under the control 

of a host implemented through a mono- or multi-core structure. Accelerators are made in several ways. Some are dedicated 

circuits (for example, supporting various encoding or decoding operations) while others are programmable many-cell 

structures (as GPUs). An example is the M1 chip, made by Apple, in which a multi-core host is supported by a series of 

accelerators. Some are specially dedicated for functions implemented directly in hardware and others are multicellular 

programmable structures (a GPU and a Neural Engine). 

The growing number of accelerators in the economy of SoCs has recently necessitated the emergence of a new concept: 

Accelerator-Level Parallelism (ALP). Any accelerator can be a parallel structure, but now we are faced with the parallel 

operation of several accelerators on the same silicon chip. It would be great if the mechanisms for structuring these 

accelerators, in a SoC or a network of SoCs, would be subject to a well-founded theory. We are warned in [2]: 
 

“We assert there is as yet no “science” for debating and systematically answering basic questions for how to best 

facilitate broad, flexible, and effective use of multiple accelerators.” (p. 36) 
 

In [1-3] the authors invite us to contribute to the development of an appropriate theoretical environment for using the 

ALP concept in improving the efficiency of heterogenous computing for one- or multi-chip applications. M. D. Hill and V. 

J. Reddi emphasize the main problem with accelerators: the limitation due to the von Neumann Bottleneck. Indeed, it is easy 

to think of organizing a many-core system, but it is very difficult to satisfy the "hunger" of data that such a system has for 

certain applications, "hunger" that can only be satisfied with energy costs hard to accept. Also, the interconnection of large 

numbers of cells poses very difficult and costly structural organization problems in terms of area and energy.  

The Gables model proposed by M. D. Hill and V. J. Reddi is a good start in developing the conceptual environment in 

which ALP could develop. The contribution we want to make to this concept is related to the organization of a heterogeneous 
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system that uses an ALP accelerator. If the host is a general-purpose system, then can't we hope that the ALP accelerator 

can also be configured as a general accelerator structure? Yes, we can. 

In [3] are identified three major problems related to the ALP approach: 

1. the computational performance of each accelerator which is strongly related with the internal memory hierarchy and 

the internal interconnections between cells 

2. the data movement through the bottleneck between internally distributed memory in cells and the external memory 

3. the bottleneck introduced by the overhead due to the communications between the accelerators. 

All these three problems are addressed in this paper. In fact, it proposes a general framework in which the three issues 

are considered. There are pros and cons to a general solution for configuring and programming an ALP accelerator. For a 

start, very briefly, we can say that: 

 it is worth promoting a general solution for ALP because the resulting structure will be simpler and therefore easier 

to design, validate, implement, test and use 

 we may be reluctant to promote a general solution due to the functional diversity of the accelerators, which will 

sometimes prevent us from achieving maximum performance. 

However, no one prevents the application of a limited general solution that can be supplemented at any time with 

solutions dedicated to more special functionalities. 

We can maximize the chances of success of a general solution for a network of accelerators operating in parallel if we 

approach parallelism from a very well-founded point of view theoretically. Unfortunately, we cannot use the theoretical 

approaches used for parallel computation because they do not rely on abstract models derived from a mathematical model. 

We have described in [4] the reasons why the current solutions for parallel computing derive from ad hoc approaches imposed 

on the market by the corporate environment and not by the academic community. 

In the next section we will present a hierarchical recursive model that we propose as a theoretical framework for the 

development of a science of ALP systems. The third section shows how to apply the recursive abstract model we proposed 

to substantiate the ALP approach. A final remarks section will conclude our contribution. 
 

2. Abstract Recursive Model for Parallel Computing 
When the first symmetrical MIMD engine is introduced on the computer market by Burroughs Corporation in 1962, it 

did so by connecting four computing systems together without any theoretical basis and having no specific solution for 

programming an application that could run in parallel on more than one processor. Starting form 1965, Edsger W. Dijkstra 

formulates [5] the first architectural concerns about specific parallel programming issues (critical region problem, 

semaphores, the dining philosophers problem, guarded commands). In 1974-82 abstract machine model proposals (confused 

with mathematical models) start to come in [6-8] after almost two decades of non-systematic experiments (started in the late 

1950s) and the too early market production. No one yet really considered as mandatory a mathematical parallel computation 

model, although it was there waiting to be considered (see Kleene's mathematical model for computation [9]). 

 Under these conditions, we should not be surprised if the accelerators used in most applications achieve performance 

that is far from their peak performance. This shortcoming is not only due to the von Neumann Bottleneck; organizational and 

architectural mismatches of their internal structures are also to be considered. Ad hoc organized structures, or structures 

optimized for specific areas cannot be used effectively as general-purpose accelerators. Our proposal for the structure and 

architecture of ALP accelerators starts from the abstract model we proposed for a parallel computing system. This abstract 

model was configured [4], based on the partially recursive function model proposed by Stephen Kleene [9], and developed 

in [10-12]. 

 
2.1. The Abstract Model 

 The theoretical basis for ALP must start from an abstract model of parallelism because the acceleration of intense 

computation can only be achieved in a parallel computing system. The abstract parallelism model we have proposed is 

illustrated in Figure 1, where a recursively organized structure is presented. The recursion is given by the fact that engi is a 

structure of the same type as engi+1 for i = 1, 2, ..., while eng0 consists of a simple accumulator-based execution unit working 



 

 

 

 

 

 

CIST 123-3 

on the content of a register file, mem0, of sufficiently large size (for example, of 4KB in an FPGA implementation). Therefore, 

MapScanRedi(p(…)) represents an i-th level in the recursive hierarchy, for i = 1, 2, ...i, with a p-cell MAP array where each 

cell is a MapScanReduce structure with (…) number of cells. For example: MapScanRed3(4(16(256))) stands for a hierarchy 

having on top 4 cells, each containing 16 cells of 256 elementary cells (eng0 & mem0) each. For MapScanRed1(256), 

REDUCE and SCAN networks are (pipelined) circuits, while for the other levels the actual structure can be designed using 

simple processors. 
 

                                           
 

Fig. 1: Recursive abstract model for parallel computation [11]. 
 

The recursive organization we propose produces a hierarchically organized structure that can be developed at the level 

of a silicon chip, but can be extended on boards, racks, cabinets to the level of data centres and even beyond, to the level of 

global networks. 

The architecture of the lowest level in the proposed hierarchy is defined by the data structure deployed in the local 

memories mem0 in the MAP array, the instructions executed in each cell by eng0, and the functions performed in the log-

depth networks REDUCE and SCAN (see [13]). Shortly, the architecture can be defined as follows: 

 data structure in the MAP array is the matrix: 
 

M = [

𝑠11 ⋯ 𝑠1𝑝
⋮ ⋱ ⋮

𝑠𝑚1 ⋯ 𝑠𝑚𝑝

] 

 

where: vertical vectors VVi = [s1i s1i … smi], for i = 1, 2, …, p, represent the content of the local memory mem0 in the 

celli, while the horizontal vectors HVj = [s1j s1j … smj], for j = 1, 2, …, m, are vectors distributed along the MAP array 

 the Boolean vector: B = [b1 b2 … bp] used to control the activity of each cell; if bi=1 then celli is active, else celli is 

inactive 

 in each clock cycle, from the program memory of Control are fetched two instructions, one for Control and another 

issued to the MAP array to be executed in each active cell; the arithmetic and logic instructions are similar in Control 

and in the cells of the MAP array, while the control instructions are specific for the MAP array as follows: 

o ACTIVATE: bi = 1, for i = 1, 2, …, p, thus activating all the cells in MAP 

o WHERE(cond): bi = ( bi & condi) ? 1:0, only the active cells where the condition cond is fulfilled remains 

active 

o ELSEWHERE: only the cells inactivated by the previous WHERE switch in the active state 

o ENDWHERE: the vector B switches back to the state before the previous WHERE instruction 

   providing a space control in the MAP array 

 the REDUCE network performs only few functions among which we list the following:  

o adds the active components of the horizontal vector provided by the MAP array 
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o selects the maximum value from the active components of the horizontal vector provided by the MAP array 

o selects the minimum value from the active components of the horizontal vector provided by the MAP array 

 the SCAN network performs, for example, permute, prefix sum, identifies the first occurrence of 1 in the B vector 

 data transfer between the distribute memory in MAP and Memory is done transparently to the computation 

performed in MapScanReduce system, thus diminishing the von Neumann Bottleneck effect. 

Versions of MapScanRed1(1024) where implemented in silicon (the last one in 2008 using 65 nm standard process), or 

in FPGA technology [15].  

 
2.2. Programming the Recursive Hierarchy of Parallel Structures Used as Accelerators  

Parallel accelerator programming requires a specific approach. If, in a heterogeneous computing system, host 

programming involves high-level languages for which high-performance compilers are developed that are also based on the 

use of optimized function libraries, then for parallel accelerators it is preferable to optimize general purpose function libraries 

or libraries focused on specific application areas. We quote in this sense from [17]: 
 

“The software span connecting applications to hardware relies more on parallel software architectures than on 

parallel programming languages. Instead of traditional optimizing compilers, we depend on autotuners, using 

a combination of empirical search and performance modelling to create highly optimized libraries tailored to 

specific machines.” 
 

Each level i in the hierarchy can be conceived as benefiting from a kernel library of functions implemented in the 

hardware represented by the immediately lower level, i-1. The kernel library solves functions on data structures limited by 

the size of locally distributed memi-1 memories. At level i, the function is implemented on data structures allowed by the size, 

usually larger, of the memi type memories. Thus, only at MapScanRed1 (p) level, programming in the assembler will be 

required to develop a kernel library (advanced optimization of software libraries for current CPUs is also done in assembly 

languages). At any level higher than the basic one, the programming will be able to be done in a higher-level language for 

which we have high-performance compilers. 

 
2.3. A Case Study: Matrix Multiplication 
 

2.3.1 Acceleration compared with a mono-core solution 

Let be a MapScanReduce1(p) accelerator. The integer multiplication (including the transfer of data) of two square 

matrices of p×p elements is performed in a number of clock cycles (the evaluation is based on a program written in assembly 

language running on a FPGA implemented version of the MapScanReduce1(p) accelerator) equal to: 
 

TmatrixMultiply+TdataTransfer = ((2p2 + plog2 p+9p+5) + (p2 + p)) clockCycles 
 

while the same computation is performed by a program written in C++ for a x86 mono-core architecture is performed in  
 

TMMC++ ≃ 22p3 clockCycles 
 

Results an acceleration, considering the two engines operating at the same frequency, of  
 

α ≃ 22p3/((2p2 + plog2 p+9p+5) + (p2 + p))  
 

The acceleration is super-linear and converges to 22p/3 for big p. The super-linear acceleration is due to the fact that in 

the parallel accelerator we propose, in addition to the disappearance of the third loop assumed by the algorithm (which would 

justify an acceleration of p times), the following processes take place in parallel: 

o the control process supposed by the algorithm, in Control 

o multiplication in MAP cells 

o summation in the REDUCE network (its latency is avoided using a special feature added in the MAP array). 
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2.3.2. Energy & Area Compared with an Off-the-Shelf Solution 

The same operation must be evaluated in comparison with an off-the-shelf many-core solution. Using data from [16] 

and our evaluation based on simulation and synthesis in the Cadence environment for our accelerator, in Table 1 is shown 

the comparison of a GPU with the MapScanRed accelerator in performing 1024×1024 array multiplication.  
 

Table 1: Comparison of a GPU and MapScanRed accelerator in performing 1024×1024 matrix multiplication. 
 

 GeForce GTX 850M MapScanReduce1(512) GeForce vs. MapScanRed 

Chip area 148 mm2 40 mm2 3× less for MapScanRed 

Number of execution units 640 512 in the same range 

Energy for 1024×1024 matrix 

multiplication 

450 mJ 18.4 mJ 24× less for MapScanRed 

Technology node 28 nm 28 nm the same 

Clock frequency 1.046 GHz 1 GHz similar 

Chip bandwidth  80 GB/sec 20 GB/sec 4× less for MapScanRed 

Execution time for matrix 

multiplication 

2 ms 2.3 ms similar 

 

3. Heterogenous Systems with ALP Co-Processor 
The recursive definition we propose for a parallel accelerator can theoretically support ALP applications from a 

theoretical point of view. Instead of an unstructured organization of many accelerators on one SoC, we offer a hierarchical 

structure that can be more easily and efficiently controlled by a CPU as a host. 

The main problem that limits the performance of a parallel structure is the limitation that occurs due to the von Neuman 

Bottleneck. To this are added the problems raised by the communication between the cells that work in parallel. 

A detailed analysis of both issues can be found in [3]. Three structural configurations are examined (see figures 5, 10 

and 11 of the cited paper) to evaluate the efficiency of an ALP type system. In the first, the DRAM memory, external to the 

SoC, is the one that supplies data to the IPs (the CPU and the accelerators). Also, communication between IPs is done through 

this external memory. In the second configuration, the SoC contains an internal buffer, in the form of an SRAM that 

attenuates the effect introduced by too frequent communication with the external DRAM memory. At the same time, 

communication between IPs is accelerated by the use of this SRAM. The third solution introduces a bus hierarchy that 

facilitates concurrent transfers in the system. From this analysis it can be seen that a hierarchical tree distribution allows the 

attenuation of communication problems in an ALP system both with the data source external to the SoC and between the IPs 

deployed on the chip. 

We consider that the model of an ALP system, with a tree distribution network that is endowed in its leaves with 

accelerating IPs and a CPU, can have as an alternative a hierarchical tree network of accelerating IPs whose root is a CPU. 

One could thus conceive an alternative solution in the form of a heterogeneous computing system having as host the CPU 

and as accelerator a hierarchically organized ALP system. 

We propose, as a promising candidate for the previously prefigured heterogeneous system, a system based on the 

recursive abstract model described in the previous subsection. Figure 2 shows, as an example, an instantiation of this model 

for a two-tier hierarchy; on the upper level are instantiated 4 cells each consisting of a parallel structure having 256 

elementary cells of type (eng0, mem0). The host is HOST COMPUTER and the accelerator is MapScanRed2(4(256)). In this 

case the accelerator consists of 4 general-purpose accelerators. The memory hierarchy is organized on four levels: HOST 

COMPUTER’s main memory, Memory, 4 memory modules m, and 256 local memories mem0 in each cell. The SCAN and 

REDUCE networks organized on two levels ensures, besides important functional aspects, a communication at cellular level 

in the two levels of the hierarchy. 

What would be the pros and cons for an implementation of an ALP system in the hierarchical form we propose? We 

must compare the currently used configurations of ALP co-processors, represented in Figure 3, with our proposal represented 

in Figure 4. 
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Fig. 2: Heterogenous system with an ALP co-processor implemented as a four-cell MapScanReduce parallel accelerator, where each 

cell consists of a 256 elementary cells MapScanReduce parallel accelerator. 

 

                                            
Fig. 3: Unstructured, flat organization of the N-accelerator ALP co-processor used as the accelerator part in a heterogenous system. 

   

In the version of the heterogenous system presented in Figure 3, N accelerators, A1, … AN, and Host’s components, 

CPU, Memory and I/O, are interconnected using a standard interface, Interconnection Fabric, and all transfers are performed 

using Host’s Memory (see in [2] the SoCs Apple’s A11 Bionic, Qualcomm’s Snapdragon 845, HiSillicon’s Kirin 970, 

Samsung’s Exynos 9810, or Apple’s M1 in [14]), while in our proposal, represented in Figure 4, there are solutions for data 

transfers which avoid the use of the Memory module from Host. Indeed, the hierarchically distributed memories M, parts in 

pairs MSR&M, in the structure represented in Figure 4, allow concurrent transfers between memories M deployed at different 

levels in hierarchy.  

If two MSR&M cells in level i need to exchange data with each other, then the transfer is performed at level i+1 in the 

hierarchy. In this way, several data transfers can be performed concurrently in the system, resulting in a reduction in the von 

Neumann Bottleneck effect. 

Figure 4 shows the possibility of placing an accelerator on a certain level of hierarchy, and at the same time, the 

accelerators can be grouped into clusters in the same cell, depending on how they interact in the system architecture. This 

flexibility can be used to optimize the interaction between accelerators, on the one hand, and, on the other hand, can optimize 

the data supply process of the effector units. 
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Fig. 4: Hierarchically structured N-accelerator ALP co-processor structured on k levels, used as the accelerator part in a heterogenous 

system. For example, the accelerator A1 is organized on the k-1 level in the hierarchy, while the accelerator AN is organized on the 

level k-2 in the hierarchy. 

 

4. Conclusion 
The evolution of SoCs has naturally led to the emergence of the concept of ALP. At the same time, the theoretical 

foundation of the concept is required, a foundation that presupposes a rigorous definition of what parallel computing is. This 

is because the main mechanism by which acceleration occurs is parallelism. In this regard, we proposed that the structure 
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and architecture of ALP-type systems be based on the abstract recursive MapScanReduce model, which we proposed 

based on the Stephen Kleene's partially recursive function model. 

The main advantages of the proposed solution are: 

 the solution is of general-purpose type because it supposes programmable structures 

 the acceleration obtained by MapScanReduce accelerators is significant and is obtained at low energies and on low 

silicon areas (as we presented in the case study: super-linear acceleration at 24× less energy on 3.5× less area) 

 the proposed hierarchical organization for ALP attenuates the von Neumann Bottleneck effect in accelerators 

intercommunication and data transfer between accelerators and the main memory of the heterogeneous system 

 the hierarchical structure allows the functional approach of system programming through a hierarchy of function libraries 

that avoids the development of a complex system of compilers. 
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