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Abstract - This research is inspired by the work of climate scientists to analyse archival handwritten documents and predict reliably 

changes in the climate. The aim of this work is to better understand recognition of handwritten documents especially focusing on archival 

maritime logs. Indeed, OCR (Optical Character Recognition) has existed for many years. The shortcomings of this widely used method, 

however, are manifesting in frequent confusion of digits and letters when it comes to archival handwritten documents. The conversation 

of perfecting the methods of automated recognition of handwritten characters has been evolving in recent years. With the advent of deep 

learning methods, new tools are considered within the problem space. In this extension of thesis work, two such methods are put to the 

test - convolutional and long-short term memory (LSTM) neural networks (NN). The applicability of several state-of-the-art models is 

considered with detailed experiments and comparative analysis. A compound model of convolutional NN followed by LSTM is also 

considered. While all models register high accuracy, it is observed that the compound model performs faster with accuracy above the 

lone CNN.  
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1. Introduction 
An article from August 2021 sparked this renewed interest in identifying archival handwritten characters and symbols 

for purposes of transcribing. The overarching goal of such undertaking is automating the process of digitizing logbooks to 

utilize archival data for more accurate predictions of where climate is headed. These logbooks being archived as scanned 

documents due to their age and fragility, further complicates a seemingly simple task of OCR. 

Currently the most utilized method for the computer to recognize handwritten characters, OCR exhibits shortcomings 

in inability to tell the difference between “1” versus “7”, or “6” versus “8”. Adding distortions, folds, and artifacts, the OCR 

struggle would become more pronounced [1]. Enter deep learning, more specifically, CNN. These models have shown 

significant promise on a versatile scale of image recognition problems, including handwritten recognition [2, 3]. Recently, 

there have been some reports of attaching LSTM [4] at the output of CNN to further improve the deep learning model 

capabilities. One of our goals is to test whether such coupling (we term is compound model) delivers in terms of better 

accuracy, and time for the correct identification of handwritten digits. It must be said that currently, the only known method 

of highly accurate transcription of archival handwritten documents is by hand. We are aiming to challenge this by comparing 

the performance of CNN and a compound model of CNN followed by LSTM. 

The work in [5] started this research where we account for the shortcomings of OCR and aim to improve efficiency and 

efficacy through high-level deep learning architectures [6]. While the archived logbooks contain handwritten characters as 

well as other symbols, this proof-of-concept work focuses on the digits. The dataset details are presented in section 2 with 

the deep learning architectures elaborated in section 3. Experiments are results are detailed in section 4, followed by 

conclusions. 

 

2. Data 
The dataset is collected mainly from National Oceanic and Atmospheric Administration (NOAA) which contains openly 

available weather-related reports from multiple locations spanning over the past 200 years [7]. Over 50 documents from 

NOAA containing weather report information from Worcester Massachusetts between the years of 1862 and 1950 are used 

for analysis and testing. All reports contain handwritten numerical information only, allowing for diverse handwritten 
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information spanning over almost 100 years of data. The dataset contains handwritten numbers from 0 to 9 from at least 

three different authors. A sample of the data can be seen in Fig.1a. 

 

                
                                       (a)                                                                     (b)                                                      (c) 

Figure 1: Samples of data: a) NOAA reports data; b) special characters in NOAA reports; c) open-source data 

 

         
(a)                                                                                (b) 

Figure 2: Distribution of images in: a) NOAA harvested dataset; b) open-source dataset 

 

        
(a)                                                                                                (b) 

Figure 3: Distribution of augmented datasets images in: a) simple combination of NOAA and open-source datasets; b) balanced 

trimmed dataset 

 

In addition to the digits, the NOAA archives contain a mix of special characters (Fig.1b) that are not used in the 

final dataset for this work but are noted as many of them contain digits. In addition to fractions of numbers, and writing 

that runs into other lines and numbers, notable issues include fading or doubling over existing writing. 
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For the purposes of distribution and balancing in training and validation datasets, an open-source dataset is considered, 

containing only handwritten digits (Fig.1c). This dataset contains 15,200 number images from at least 12 different authors. 

The NOAA dataset is distilled to 10,541 images of digits. Fig.2a illustrated the distribution of the various digits and 

conveys the heavy imbalance for some categories – only 537 images of “1”, but 1728 images of “2”. 

As is well-known [8], imbalance in datasets can lead to very poor performance. While augmenting is often the adopted 

resolution to this issue, here we have sourced additional 15,200 images of handwritten digits. Their distribution is illustrated 

in Fig.2b. Not all data from the open-source set is used to combat the imbalance. Only enough images are added to the NOAA 

dataset to ensure balanced representation of all digits, allowing for full “view” and consideration by the CNN and 

CNN+LSTM compound models. Post addition of images where needed most, each digit is represented by approximately 

2,500 images. The distribution of NOAA/open-source datasets is shown in Fig.3a (augmentation without balance) and Fig.3b 

(after balance). 

The final data used for testing and analysis contains 23,981 images of different numbers. These images come from the 

NOAA database and from open-source data. Combining the two datasets allows for greater diversification of training and 

exposure of the deep learning model to a larger variety of handwriting samples. 

             

3. Deep Learning Models and Architectures 
In this section we will briefly review the two main architectures utilized in our work – CNN and LSTM. While both are 

representatives of deep learning methods, i.e. operate on large to very large datasets, their methodology and aims are different 

with CNN focusing on image processing [9] and LSTM applicable to predictive analysis of time series data.  

 
3.1. Convolutional Neural Networks (CNN) 

CNNs consist of two main portions (Fig.4) – feature extraction to break down the image and emphasize key features; 

and classification to identify whether the image region of interest contains information of particular group or class. 

 
Figure 4: Convolutional neural network general architecture (https://www.upgrad.com/blog/wp-content/uploads/2020/12/1-4.png) 

 

In general, a CNN is comprised of at least four common layers: a convolutional layer, a pooling layer, fully connected 

layer, and a dropout layer. The convolutional layer extracts various features from the image. This is performed by sliding the 

filter over the image to centralize a matrix based on the pixel values for sections of the image. The dot product is then 

calculated between the values that exist in the image from the matrices created [10]. A pooling layer often follows a 

convolutional layer. It decreases the size of the feature map created from the convolutional layer, either by averaging or 

pulling the max values in the matrices. The fully connected layer is comprised of weighted connections between layers. This 

is where decisions on what the features represent are made [10]. The drop layer [11] removes some of the weighted 

connections between layers forcing the model to better generalize what feature make up data. The relationships among 

neurons are revised using optimizers. Thus, linearity is removed from the model allowing for accurate generalization [11]. 

 
3.2. Long-Short Term Memory (LSTM) Networks 

Recurrent neural networks (RNNs) contain a loop allowing for information to persist from one node to another as seen 

in Fig.5a. A loop from hidden state H to itself allows for the passing of information from one node in the network to the next 
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[12]. RNNs are used in speech recognition, translation, and image captioning. If we want an RNN to predict the next word 

in a sentence, the sentence must remain short to allow for accurate results. The longer the sentence is, the worse the prediction 

will become as the model will struggle to link a correct output to an input that happens a long time before [13].  

 

               
(a)                                                                                                (b) 

Figure 5: Recurrent neural networks: a) general unfolded RNN architecture; b) general LSTM composition 

 

Long short-term memory networks are a special kind of RNN capable of learning long-term information. LSTMs 

contain a more complex structure in their hidden states than general RNNs (Fig.5b). An LSTM contains three main gates; a 

forget gate, a learn gate, and an output gate [12]. The forget gate uses a sigmoidal function to gauge information from 0 to 1 

for what information should be kept, and what information should be forgotten. Once the forget gate has determined what 

information is useful, this information is passed to the learn gate. The learn gate determines what values need to be updated 

based on the information that was deemed useful from the forget gate. Once values are updated, they are received by the 

output gate. The output gate determines what the node is going to pass onto next node and what is going to output itself [14]. 

This process is repeated as many times as needed over the length of the data.  

 
3.3. Compound model CNN+LSTM 

The basic idea of CNN is image element(s) identification and classification. The core idea of LSTM is processing 

sequential data to memorize and make the connections leading to classifying the sequence gist. How are these two 

functionalities to be combined?  

 
Figure 6: CNN and LSTM – compound model – working together 

 

The CNN’s convolutions look at the image row by row, essentially “reading” it. With that, the pixels are transformed 

into sequences of features. Through additional layers, the most important features remain in the “sentence”. The LSTM then 

is responsible for making the connections between old and new information, determining what is to be learned or forgotten 

and to predict the probability of the “sentence” as one of the trained classes [15].  
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Figure 7: Data pre-processing steps 

 

Table 1: Dataset distribution and content of training, validation, and testing subsets 

Digit Total Train Test Validation 

Zero 2593 1815 519 259 

One 2146 1502 429 215 

Two 2500 1750 500 250 

Three 2518 1763 503 252 

Four 2454 1202 490 245 

Five 2382 1668 476 238 

Six 2500 1750 500 250 

Seven 2278 1595 455 228 

Eight 2500 1750 500 250 

Nine 2110 1477 422 211 

Totals 23981 16787 4796 2398 

 

 

 

(a) 

 

 
(b) 

 

Figure 8: CNN model accuracy and loss: a) training and validation accuracy/loss graphs; b) testing confusion matrix 

 

This process is simplified in Fig.6. An image is represented by grey scale pixel values. The image matrix of 64x64 

serves as the CNN input for feature extraction and pooling. Once the feature extraction is complete, a new matrix with the 

final pooled values is reshaped into single columns of the values from the pooling matrix. The LSTM takes over these 
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“sentences”. The final prediction is output as matrix with probabilities that the image belongs to a class from a list of given 

classes, in this case the classes are any number between 0 and 9. The class with the highest probability is predicted to be the 

number and the final prediction is outputted [16]. This process is done for all images in the dataset. We term the combination 

of feature extraction from a CNN and prediction from an LSTM as a compound network. This name embodies the ideas of 

composing two separate networks and putting them together to create a new network. 

 

4. Experimentation and Results 
For the purposes of training, validation, and testing, all images are converted to grey scale and sized as shown in Fig.7. 

Table 1 shows the distribution of the training, validation, and testing data per digit in the final utilized dataset. As a CNN, 

we utilize ResNet18, which contains 18 layers [17]. There are 17 convolutional layers that feed into each other after 

performing convolution on the images. An average pooling layer is applied followed by a fully connected layer. Each 

convolutional layer in the Resnet architecture is followed by a batch normalization layer and a rectified linear activation 

function (ReLU) layer [18]. 

 

 

(a) 

 

 
(b) 

Figure 9: CNN+LSTM model accuracy and loss: a) training and validation accuracy/loss graphs; b) testing confusion matrix 

 

In our experiments Adam optimizer is used with a learning rate of 0.000001. This optimizer allows for gradient descent 

with momentum learning, which implies sparing use of memory and training time [19]. Mean square error is used for the 

loss calculations. Training is completed in 250 epochs and batch training size is 64.  

Over the course of the run time, which took 2,807.80 seconds (47 minutes), a gradual increase in validation accuracy 

and gradual decline in validation loss is seen. This validation accuracy can be seen to slowly increase to 93.5% over the 

course of the 250 epochs (Fig.8a). More dramatic is the training accuracy, spiking from 0.8 in around 20 epochs. After the 

initial spike, the model slows down until it reaches a training accuracy of 1.0 at around 60 epochs. The final classification of 

digits can be seen in the confusion matrix (Fig.8b), showing that the model does not struggle in validating what data it was 

viewing. All number classifications scored over 85%, with eight out of ten classifications being over 90%.  
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The compound model also uses Resnset for consistency of experimentation. Instead of sending all information from the 

fully connected layer to a SoftMax layer for output, the data is reshaped via flattening for LSTM consumption. This decreases 

the number of channels from 3 to 2. Then a time distribution reshape follows, which assigns the data to be broken into 

segments like that of time series data (Fig.6). The LSTM must contain an input size equal to the reshape layers output. From 

the reshaping output the number of hidden layers can be decided, for this testing 32 hidden layers are determined as best 

(empirical and documented [14] evidence).  

The final accuracy for CNN+LSTM compound model is 95.6% with a loss of 0.004 (Fig.9a). The runtime is recorded 

at 2442.70 seconds (41 minutes). The compound model vastly outperforms the ability of a CNN on its own. The identification 

reached testing accuracies (Fig.9b) as high as 99.5% and only as low as 91.9%. Compared with the CNN alone (Fig.8b), the 

compound model shows a significant improvement in performance. 

As with any learning system, there are mishaps. To further understand the failings of the models, both with and without 

an LSTM, further observation is made only on images that are misidentified. Table 2 illustrates the common CNN 

misclassifications. We conjecture the most common causes to be fading in portions of the image, cropping causing features 

to be removed, and odd shapes and writings of the numbers. The worst performing numbers for classification are still ‘3’ 

and ‘9’ in the compound model.  

Table 2: Misclassified Images for Resnet18                                        Table 3: Misclassified Images for Resnet18+LSTM 

Image True Prediction Notes 

 

8 7 General 

Misclassification 

 

5 3 Missing defining 

features 

 

3 6 Fading, Missing 

defining features 

 

3 9 Poor crop on resizing 

of image 

 

9 1 Poor shape where 9 in 

malformed 

      

Table 3 shows a breakdown of the most common reasons for misclassification across the dataset. Noticeably the most 

common reason for the images to be misclassified is due to strange shapes of the images when written. While some 

misidentifications are due to general failure, most happen due to creative styles of writing. Understanding of the reasons 

behind deep learning models’ misclassification allows for deeper appreciation of the necessity of big datasets. While 23,981 

seems like a considerable number capturing generalization of numbers for all types of styles of writing can be problematic. 
 

5. Conclusion 
In conclusion, we are exploring deep learning models for the purposes of archival handwritten document digitization. 

Such operation implies recognizing the characters and symbols and transcribing the archival logbooks in electronic format. 

While OCR has been a good standard for many years, its deficiencies in handwritten documents are well documented. We 

explore the deep learning model of CNN, but, more importantly, introduce a compound model of CNN and LSTM to handle 

the task mode efficiently (in less time) and more efficaciously (higher accuracy). The presented proof-of-concept work is 

limited to handwritten digits sourced from NOAA archives [20]. The results lead us to conclude that: 

 CNN (Resnet18 in our case) is efficient registering accuracies spanning 88% (for “9”) to 98.6% (for “1”). The training 

process clocked at 47 minutes. 

 CNN + LSTM (Resnet18 with some modifications at the end to accommodate the LSTM input needs) is very efficient 

at accuracies of 91.94% (“9”) to 99.3% (“1”). The training process is shorter at 41 minutes. 

Image True Prediction Notes 

 

3 9 Poor shape where 

3 has extra 

features 

 

8 3 General 

Misclassification 

 

4 6 Poor shape - 4 

appears as 6 

 

9 4 Poor shape - 9 is 

malformed 

 

0 6 Poor shape - 8 is 

malformed 
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 While we are working with augmented NOAA and open-source dataset of 23,981 images, to alleviate further some 

misclassifications, larger dataset is needed with more diverse samples. 

In summary, it is evident that compound models are better than their individual parts. More work is needed to 

understand the handwriting of archival documents, and the automation in the translation of old texts.  
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