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Abstract – In this paper a new class of fuzzy systems called scalable fuzzy (SF) systems are proposed. The SF design is built upon the 

idea of extending the conventional fuzzy logic approach to linguistic variables to all numbers. This leads to a new set of infinite continuous 

rule-base and membership functions which are located on all rational numbers and are defined based on scale, position, and input 

variables. The consequent of rules in the Takagi-Sugeno form are then modified, and a mathematical solution based on the convolution 

theorem is employed for SF modeling purposes. The discrete form of SF systems is developed, and its application is exemplified using 

several case studies. 
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1. Introduction 
Fuzzy systems have a wide range of applications in control [1] and system modeling [2]. Fuzzy logic was first introduced 

by Zadeh [3] and was further developed in the Mamdani form [4] and the Takagi-Sugeno (T-S) form [5]. In a Mamdani 

fuzzy system, similar to premises, consequent of each rule is based on sets for output of each rule (membership function), 
 

Mamdani. rule index:𝑖𝑑, If 𝑥1 is A and 𝑥2 is 

B then 𝑦 is C. 

                  (R1) 

 

However, this form is difficult to work with because the output of the system is based on membership functions which 

limited the application of the Mamdani form. In order to have more room for different types of equations in the system the 

T-S model was developed with an equation as the consequent and became rapidly popular in control and modeling [6], 
 

Takagi-Sugeno. rule index:𝑖𝑑, If 𝑥1 is 

A and 𝑥2 is B then 𝑦𝑖𝑑 = 𝑎1𝑥1 + 𝑎2𝑥2. 

                                                                                                           (R2) 

 

While the T-S model improved the fuzzy systems by making the consequents easier to work with, it also changed the 

nature of the consequent from a fuzzy logic-based form to a pseudo-crisp logic form; i.e., an equation. Furthermore, if a 

system required more accuracy, either the number of membership functions, or the number of premise input variables, or the 

number of parameters in the consequent had to increase, all of which significantly increased the computational cost of 

obtaining the defuzzified output or in case of a modeling application, the computational cost of training a fuzzy based 

adaptive model. Moreover, while one of the advantages of the fuzzy systems is that they recognize the fuzziness of linguistic 

variables, the same advantage causes an inherent drawback of the fuzzy systems in both forms which is that the accuracy of 

the fuzzy system is directly affected by the shape and the number of membership function and how they are scattered in the 

input space [6].  

 Finally, in the conventional fuzzy system the membership functions would generally be concentrated around the 

operating range of the device which means that the input membership functions needed to be designed by an expert or with 

an optimization algorithm. Even then, if a system had a large enough operating range the fuzzy model could come short of 

the design criteria or require a significantly high computational effort. 

In this paper we introduce a new form of fuzzy inference systems based on an infinite number of rules and membership 

functions with the consequent of each rule, a function of rule indices. The proposed form is shown to be unlimited in range, 
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free of membership function design requirements, employing only fuzzy variables, and of low complexity for calculating the 

defuzzified output(s). One obvious application of the new class of fuzzy systems is in modelling of different processes.  The 

modelling technique is developed using the convolution theorem and is also presented in this paper, and its performance is 

demonstrated for three case studies.  

The remainder of this paper is organized as follows. Section 2 describes the concept and design of SF systems. Section 

3 is dedicated to developing a technique for system modeling using SF systems and convolution theorem as a proof of 

concept. The SF modeling technique is then tested in Sec. 4 and the results are discussed. Finally, the conclusion of this 

paper is presented in Sec. 5. 
 

2.  Scalable Fuzzy Systems 
 Going back to the inspirations for developing fuzzy logic, as stated by Zadeh [3], often the classes of objects such as 

"warm", "tall" and "numbers greater than 1" have imprecise definitions yet are commonly used and have important 

implications. The extension of the same idea, that the numbers themselves are imprecise, is the inspiration of this paper. 

Following the same logic of stating that if a temperature of 40 degrees is called "hot" thus 39 degrees is almost as hot, it 

could be stated that if we define a set called "numbers close to 40", 39 is not exactly equal to 40 but it is fairly close. In other 

words, 39 is a member of the "close to 40" set, for instance, to the degree of 0.9. At the same time, it should be noted that 

based on the nature of the system the degree of closeness is dependent on scale. For instance, while 39 degrees is fairly close 

to 40 degrees, 39 days of bacteria population growth and 40 days of population growth are relatively distant due to the 

exponential behaviour of their growth. 

Based on this analogy a category of membership function called closing functions are defined as follows 
 

                                                          𝐶(𝑡)
𝑥,𝑠 = 𝐶(

𝑡−𝑥

𝑠
)                                            (1)                                                                                            

 

where 𝐶(•) is the mother membership function, 𝑡 is the input variable, 𝑠 is scaling factor, and 𝑥 is a constant called the 

membership index which is an indication of where the closing function is positioned with respect to the variable-axis. Here, 

the membership degree represents the closeness of variable 𝑡, to membership index 𝑥, at scale 𝑠. Also, the mother 

membership function could be any even function with the properties of a normalized membership function at zero.  

  Now since the relation of closeness exist for all numbers in the continuous rational space 𝑡 ∈ ℝ for any variable 𝑡, the 

proposition of this paper is that there should be an infinite number of membership function at each number in the 𝑥 ∈ ℝ. 

Figure 1 represents symbolically the arrangement of the infinite membership functions where 𝑥 represent the mean value 

(position) of membership function 𝐶(t)
𝑥,𝑠

. Note that the x-axis in the membership functions represents the variable. 
 

 

Fig. 1. Infinite closing membership function for variable 𝑡. 
 

 Thus, since there is an infinite number of membership functions, there would be an infinite number of rules each 

corresponding to one of the membership functions. Consider a fuzzy system with 𝑛 variables, 𝑡1, 𝑡2, … , 𝑡𝑛, the range for each 

of them is (−∞, +∞). The infinite fuzzy rule base is defined as follows 
 

SF. rule index:𝑋 = (𝑥1, 𝑥2, … , 𝑥n), If 𝑡1 is 

𝐶(𝑡1)
𝑥1,𝑠1 and 𝑡2 is 𝐶(𝑡2)

𝑥2,𝑠2 and … and 𝑡n is 𝐶(𝑡n)
𝑥n,𝑠𝑛 

then 𝑦𝑋 = 𝑓(𝑥1,𝑥2,…,𝑥n). 

(R3) 
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where 𝑋 = (𝑥1, 𝑥2, … , 𝑥n) is the rule index, 𝑦𝑋 is the output of rule 𝑋, and 𝑓(𝑥1,𝑥2,…,𝑥n) is a function of rule index. These rule 

indices are indicatives of which membership function is present in a rule and consequently where each membership function 

is located on the variable space, 𝑇 = {𝑡1, 𝑡2, …, 𝑡n}. 

There are two key features in the SF-form fuzzy system. First, the whole fuzzy system including membership functions 

and consequent output is a function of rule indices which, compared to the conventional T-S system, relieves the fuzzy rule 

base of their dependency to the input variables, 𝑡1, 𝑡2, …, 𝑡n, except for their place as the inputs to the fuzzy system as a 

whole.  

 Second, the firing degree of the scalable fuzzy system is the same function as the multiplication of membership 

functions. Considering a Gaussian mother membership function (2) and using a multiplication AND operator, this is shown 

in Fig. 2 for a single input SF system. 
 

 𝐶(𝑡)
𝑥,𝑠 = 𝑒

−
1

2

(𝑡−𝑥)2

𝑠2  


 

 

Fig. 2. Firing degrees with respect to 𝑥 and 𝑡. 
 

 As shown in Fig. 2, if the input mother membership function is Gaussian, the firing degrees of the collective rules of 

the rule base, as a function, would be the same Gaussian function at 𝑥0 = 𝑡0 as well. In other words, when for a specific 

variable value, 𝑡 = 𝑡0, the firing degree is calculated for membership functions starting at 𝑥 = −∞ and moving to 𝑥 = +∞ 

the resulting function of firing degrees will be the same closing function with respect to 𝑥, translated to position 𝑥0 = 𝑡0. 

This is easily proved for all mother membership functions as follows (keep in mind that mother membership function is an 

even function) 

 𝑓𝑑𝑥 = 𝐶(
𝑥−𝑡0

𝑠
)|𝑥 ∈ ℝ ≡ 𝐶(

𝑡−𝑥0

𝑠
)|𝑡 ∈ ℝ

 

where 𝑓𝑑𝑥 is the firing degree for rule 𝑥. The same could be said for an n-variable SF system with the following firing degree 

for rule with index 𝑋 at point (𝑡1,0, 𝑡2,0, … , 𝑡𝑛,0) 
 

 𝑓𝑑𝑋 = 𝐶 (
𝑥1−𝑡1,0

𝑠1
) ∙ 𝐶 (

𝑥2−𝑡2,0

𝑠2
) ∙ … ∙ 𝐶(

𝑥𝑛−𝑡𝑛,0

𝑠𝑛
)|𝑋 ∈ ℝ𝑛

 

where 𝑓𝑑𝑋 is the firing degree. Using the obtained firing degree functions of 𝑋 for the rule base the defuzzification equation 

for a n-variable system can be written as follows (note that 𝑦𝑋 = 𝑓(𝑥1,𝑥2,…,𝑥n) is the function pertaining to the consequents) 

𝑌(𝑡1,𝑡2,…,𝑡n) =
∫ 𝐶(𝑡n)

𝑥n,𝑠𝑛+∞

−∞
 … ∫ 𝐶(𝑡2)

𝑥2,𝑠2+∞

−∞ ∫ 𝐶(𝑡1)
𝑥1,𝑠1+∞

−∞
∙𝑦𝑋𝑑𝑥1𝑑𝑥2… 𝑑𝑥𝑛

∫ 𝐶(𝑡n)
𝑥n,𝑠𝑛+∞

−∞
 … ∫ 𝐶(𝑡2)

𝑥2,𝑠2+∞

−∞ ∫ 𝐶(𝑡1)
𝑥1,𝑠1+∞

−∞
𝑑𝑥1𝑑𝑥2… 𝑑𝑥𝑛

 

 

Substituting the closing functions (5) using the mother membership functions (1) gives 
 

𝑌(𝑡1,𝑡2,…,𝑡n) =
∫ 𝐶(

𝑡n−𝑥n
𝑠𝑛

)
+∞

−∞
 … ∫ 𝐶(

𝑡2−𝑥2
𝑠2

)
+∞

−∞ ∫ 𝐶(
𝑡1−𝑥1

𝑠1
)

+∞

−∞
∙𝑦𝑋𝑑𝑥1𝑑𝑥2… 𝑑𝑥𝑛

∫ 𝐶(
𝑡n−𝑥n

𝑠𝑛
)

+∞

−∞
 … ∫ 𝐶(

𝑡2−𝑥2
𝑠2

)
+∞

−∞ ∫ 𝐶(
𝑡1−𝑥1

𝑠1
)

+∞

−∞
𝑑𝑥1𝑑𝑥2… 𝑑𝑥𝑛

 

 

What is appeared in (6) is a convolution of the membership function and the fuzzy consequent output function, 𝑦𝑋, thus 

it can be written as 
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𝑌(𝑡1,𝑡2,…,𝑡n) =
(𝐶(

𝑥n
𝑠𝑛

)∗…∗𝐶(
𝑥2
𝑠2

)∗𝐶(
𝑥1
𝑠1

)∗𝑦𝑋)
(𝑡1,𝑡2,…,𝑡n)

∫ 𝐶(
𝑡n−𝑥n

𝑠𝑛
)

+∞

−∞
 … ∫ 𝐶(

𝑡2−𝑥2
𝑠2

)
+∞

−∞ ∫ 𝐶(
𝑡1−𝑥1

𝑠1
)

+∞

−∞
𝑑𝑥1𝑑𝑥2… 𝑑𝑥𝑛

 

 

where ∗ is the convolution operator. Note that writing the convolution in this form could be misleading; to obtain the 

convolution at point 𝑇 = (𝑡1, 𝑡2, … , 𝑡n), we need to know values of each of the functions at all points 𝑇 ∈ ℝ𝑛. Furthermore, 

since the denominator of the right-hand side of the equation is constant for all variable values, it can be written as 
 

𝐶𝑠𝑢𝑚 = ∫ 𝐶(
𝑡n−𝑥n

𝑠𝑛
)

+∞

−∞
 … ∫ 𝐶(

𝑡1−𝑥1

𝑠1
)

+∞

−∞
𝑑𝑥1 …  𝑑𝑥𝑛

Substituting (8) into (7) gives 
 

𝑌(𝑡1,𝑡2,…,𝑡n) =
(𝐶(

𝑥n
𝑠𝑛

)∗…∗𝐶(
𝑥2
𝑠2

)∗𝐶(
𝑥1
𝑠1

)∗𝑦X)
(𝑡1,𝑡2,…,𝑡n)

𝐶𝑠𝑢𝑚


 

Thus (9) and (6) both can be used for obtaining a defuzzified output from an SF system in continuous space. However, 

in order to make this tool useful in practice a discrete form should be introduced. The discrete form of the defuzzification 

expression (6) can be written as 

𝑌[𝜏1,𝜏2,…,𝜏n] =
∑ … ∑ ∑  𝐶[𝜏n]

[𝑥n],𝑠𝑛… 𝐶[𝜏2]
[𝑥2],𝑠2𝐶[𝜏1]

[𝑥1],𝑠1𝑦𝑋N1
𝑥1=1

N2
𝑥2=1

N𝑛
𝑥n=1

∑ … ∑ ∑  𝐶[𝜏n]
[𝑥n],𝑠𝑛… 𝐶[𝜏2]

[𝑥2],𝑠2𝐶[𝜏1]
[𝑥1],𝑠1N1

𝑥1=1
N2
𝑥2=1

N𝑛
𝑥n=1

                   

 

where N𝑛, … , N2, N1are the number of closing functions for variables, [𝜏1, 𝜏2, … , 𝜏n], respectively. Since the denominator of 

the right-hand side of the equation is constant for all variable values, it can be rewritten as 

 
 

𝑌[𝜏1,𝜏2,…,𝜏n] =
∑ … ∑ ∑  𝐶[𝜏n]

[𝑥n],𝑠𝑛… 𝐶[𝜏2]
[𝑥2],𝑠2𝐶[𝜏1]

[𝑥1],𝑠1𝑦𝑋N1
𝑥1=1

N2
𝑥2=1

N𝑛
𝑥n=1

𝐶𝑠𝑢𝑚


 

where 

𝐶𝑠𝑢𝑚 = ∑ … ∑  𝐶[𝜏n]
[𝑥n],𝑠𝑛 … 𝐶[𝜏2]

[𝑥2],𝑠2𝐶[𝜏1]
[𝑥1],𝑠1N1

𝑥1=1
N𝑛
𝑥n=1 

 

   In summary, the proposed new fuzzy system has an infinite number of membership functions, each located on a 

rational number. Each rule of the SF system is denoted by a rule index and the consequent outputs of the SF system are 

functions of these rule indices. As shown by (4), the firing degree for each variable is the same function as the mother 

membership function at 𝑋0 = 𝑇0. This means that the fuzzification of inputs, inferencing and generating the defuzzification 

of the SF system from the input variables is a fast process, summed up in the convolution (9), due to the consistency in the 

firing degree functions for the whole support of variables and the constant value in the denominator of the defuzzification 

equation. 

3. Proposed Fuzzy Modeling and Convolution Theorem 
  One of the more common applications of the fuzzy systems is in system modeling. Different iterations of the fuzzy 

systems have been introduced for this purpose such as recurrent fuzzy systems [7] and Adaptive Neuro-Fuzzy Systems [8]. 

However, as already mentioned, these systems are limited to range, the input membership functions needed to be designed 

by an expert or with an optimization algorithm and if more accuracy was required the computational cost would increase 

significantly. 

  The proposed fuzzy modeling technique can deal with all three of those disadvantages; It is not limited to any range, 

or any level of resolution since the membership functions exist for all variables. Also, for adaptive modeling purposes the 

system can be trained instantly from a gathered set of data. This is done using the convolution theorem. Multiplying both 

sides of (9) by 𝐶𝑠𝑢𝑚 gives  

𝑌(𝑡1,𝑡2,…,𝑡n)
𝑝

= (𝐶 (
𝑥n

𝑠𝑛
) ∗ … ∗ 𝐶 (

𝑥2

𝑠2
) ∗ 𝐶 (

𝑥1

𝑠1
) ∗ 𝑦𝑥1,𝑥2,…,𝑥n)

(𝑡1,𝑡2,…,𝑡n)
 

where 𝑌(𝑡1,𝑡2,…,𝑡n)
𝑝

= 𝐶𝑠𝑢𝑚𝑌(𝑡1,𝑡2,…,𝑡n). Using the convolution theorem for (13) 
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�̂�(𝑘1,𝑘2,…,𝑘n)
𝑝

= �̂�(𝑘n) ∙ … ∙ �̂�(𝑘2) ∙ �̂�(𝑘1) ∙ �̂�𝑘1,𝑘2,…,𝑘n

where �̂�(𝑘1,𝑘2,…,𝑘n)
𝑝

, �̂�(𝑘n), … , �̂�(𝑘2), �̂�(𝑘1), �̂�𝑘1,𝑘2,…,𝑘n are Fourier transforms of 𝑌(𝑡1,𝑡2,…,𝑡n)
𝑝

, 𝐶 (
𝑥n

𝑠𝑛
), … , 𝐶 (

𝑥2

𝑠2
), 𝐶 (

𝑥1

𝑠1
), 

𝑦𝑋=𝑥1,𝑥2,…,𝑥n, respectively. Thus, the consequent of rule 𝑋 could be easily obtained as 
 

𝑦𝑋(=𝑥1,𝑥2,…,𝑥n) = ℱ−1 {
�̂�(𝑘1,𝑘2,…,𝑘n)

𝑝

𝐶(𝑘n)∙…∙�̂�(𝑘2)∙�̂�(𝑘1)
}

 

where ℱ−1 represents the inverse Fourier transform. The same could be said for a discrete form of the defuzzification, (11), 

using the circular convolution with enough zero-padding. 


𝑦𝑋 = 𝐷ℱ𝑇−1 {

�̂�[𝑘1,𝑘2,…,𝑘n]
𝑝

�̂�[𝑘n] ∙ … ∙ �̂�[𝑘1]
}



 

where 𝐷ℱT−1 represents the inverse discrete Fourier transform, and �̂�[𝑘1,𝑘2,…,𝑘n]
𝑝

, �̂�[𝑘n], … , �̂�[𝑘1] are discrete Fourier 

transforms of 𝑌[𝜏1,𝜏2,…,𝜏n]
𝑝

, 𝐶[𝜏n]
𝑥n,𝑠𝑛, … , 𝐶[𝜏1]

𝑥1,𝑠1, respectively. 

 This means that if a set of data corresponding to a set of variables, 𝑌[𝜏1,𝜏2,…,𝜏n], is gathered the corresponding consequent 

output function of the rules (as a function of the rule indices), 𝑦𝑋(=𝑥1,𝑥2,…,𝑥n), could be obtained instantly from (16) without 

any further adjustment of the technique. 
 

 

4. Examples of SF Modeling 
This section describes the effect of training data on the designed fuzzy system. Two mathematical models are used for 

training 2-dimentional fuzzy systems, and a hydraulic system is used for training a 3-dimensional scalable fuzzy system. 

Table 1 describes the two functions and the two variables which are chosen for the fuzzy model of each function. 
 

 

Table 1 Test functions 
 Function 𝒕𝟏 𝒕𝟐 

𝒇𝟏 𝑓1 = (𝑥1
2 + 𝑥2 − 11)2 + (𝑥2

2 + 𝑥1 −  7)2 𝑥1  𝑥2 

𝒇𝟐 𝑓𝑖+1
2 = 0.2 ∗ 𝑓𝑖

2 + 0.4 ∗ 𝑓𝑖−1
2 − 0.3 ∗ 𝑓𝑖−2

2  𝑓𝑖
2 𝑓𝑖−1

2  
   

  The first function, 𝑓1, is the Himmelblau mathematical equation with two variables 𝑥2, 𝑥1 ∈ [−5, 5]. Since this is a 

static system, in order to train the SF system, the data from the equation were collected with discretization step size of ∆=
0.1 and considering the entire range. Also, the mother membership function of the SF system was chosen to be triangular 

with the scale of 𝑠 = 0.1. Figure 3 shows the results pertaining the modeling of the first function.  

  Figure 4 describes the results of the simulation for the second function, 𝑓2,  which is a third order system with 

oscillations. In order to collect the data for modeling this function the 𝑓𝑖
2 series was computed for only 𝑖 = 10 iteration with 

the initial conditions of integers between [−5, 5], (i.e., 𝑓0
2 = −5, −4, … ,4, 5). 

  The mother membership function of the SF system is a Gaussian membership function with the scale of 𝑠 = 0.001 and 

the step size for discretization of variables is ∆= 0.01. 

 The results of the simulations show that the above fuzzy model is able to estimate the behavior of the first function with 

a maximum estimation error of 1.51 ×  10−12.  In the case of the second function the modeling error is 3.54 ×  10−16 and 

has a maximum error of 1.01 ×  10−3 for a prediction horizon of 4 steps. Furthermore, increasing the training data by adding 

increments of 0.1 instead of integers (i.e., 𝑓0
2 = −5, −4.9, … ,4.9, 5) for the initial conditions of the second function, improves 

the performance of the SF modeling technique to have a maximum error of 4.93 × 10−3 for a prediction horizon of 7 steps. 
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Fig. 3. Simulation results for 𝑓1: (a) plot of function 𝑓1; (b) error between the function output and the SF model estimation. 

 

     

Fig. 4. Simulation results for 𝑓2: (a) plot of function, 𝑓2 for integer initial conditions; (b) error between function and estimation. 
 

 

The third system is a double-rod cylinder which is actuated by a bidirectional pump [9].  The schematics of the system 

under consideration is shown in Fig. 5. 

 

Fig. 5. Schematics of the electrohydraulic cylinder. 
 

The nonlinear equations describing the motion of piston (moving a mass 𝑚) with respect to input signal, 𝑢, to the pump 

are as follows: 
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�̇�𝑝 =
1

𝑚
(𝐴𝑃1 − 𝐴𝑃2 − 𝑏𝑣𝑝 − 𝑘𝑥𝑝) 

�̇�1 =
𝛽

𝑉0 + 𝑉𝑝𝑖𝑝𝑒 + 𝑉1 + 𝐴𝑥𝑝

(
𝑞𝑏

2𝜋
𝜔𝑚 − 𝐴�̇�𝑝) 

�̇�2 =
𝛽

𝑉0+𝑉𝑝𝑖𝑝𝑒 − 𝑉2 − 𝐴𝑥𝑝

(−
𝑞𝑏

2𝜋
𝜔𝑚 + 𝐴�̇�𝑝) 

�̇�𝑚 = 𝑡𝑚(−𝜔𝑚 + 𝑘𝑚𝑢) 

                                                          

 

 

                                                          (17) 

 
where 𝑢 is the input voltage to the motor, 𝑣𝑝 is the piston velocity, 𝑥𝑝 is the piston position, 𝜔𝑚 is the angular velocity 

of the motor, and 𝑃1 and 𝑃2 are left-side and right-side pressures, respectively. Table 2 describes the remaining parameters. 

A typical response of the hydraulic system used for training the SF system is shown in Fig. 6.   The training data of the 

system are obtained from 3500 sets of simulations for different inputs and outputs of the system in closed-loop form each 

for 100 steps. The inputs to the SF model are the current input, the current velocity and the previous velocity and the output 

is the predicted value of the velocity for the next step. The mother membership function of the SF system is a Gaussian 

membership function with the scale of 𝑠 = 0.0001 and the step size for discretization of variables is ∆= 0.001. 

 
 

 

Table 2. Parameters of the electrohydraulic cylinder 
Parameter Symbol Value 

Displacement of the pump (m3/rev) 𝑞𝑏 4.9×10-6 

Time constant of the servo motor (1/s) 𝑡𝑚 20 

Servomotor gain (rev/(s·V)) 𝑘𝑚 25 

Piston area (m2) 𝐴 633×10-6 

Chamber volume (m3) 𝑉0 192×10-6 

Pipe volume (m3) 𝑉𝑝𝑖𝑝𝑒 42×10-6 

Pump chamber side volumes (m3) 𝑉1, 𝑉2 10×10-10 

Effective bulk modulus (Pa) 𝛽 689×106 

Viscous damping coefficient(N·s/m) 𝑏 250 

Piston and rod mass (kg) 𝑚 12 

Spring constant (N/m) 𝑘 125×103 
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Fig. 6. Typical input and output (velocity) to the hydraulic system used for training. 
 

Figure 7 describes the test results of the fuzzy model against the reference simulation for 20 steps. The test condition is 

chosen within the trained range of the system and at each step a prediction with a horizon of five steps has been performed. 

As shown, the prediction values are close to the actual values of the simulations. In this case the first steps of prediction have 

a root mean square errors of 5 ×  10−4, and the fifth steps of prediction have a root mean square errors of 1.2 ×  10−3. While 

the accuracy of the prediction deteriorates as the prediction horizon increases, within the first five steps the proposed model 

retains 98.7% accuracy. This is shown in Table 3 for predictions done at step 15. 

It should be noted that errors of order 10−16 are due to discretization step of the system. In other words, since the input 

values to the fuzzy system are discretized if the inputs accurately reflect the values of the system the discretization error is 

the totality of the error that is observed. However, once the system diverges enough from the trained range the accuracy of 

the predictions decreases. Once the system moves beyond the trained range, the SF system will only generate zero (or close 

to zero) values. 

 
 

 (a)           (b) 

Fig. 7        Simulation results for the hydraulic system. (a) Input and (b) velocity. 

 

Table 3. Prediction errors pertaining step 15. 

Horizon 16 17 18 19 20 21 22 

Error 1.1 × 10−16 1.1 × 10−16 1.4 × 10−16 8.3 × 10−17 2.0 × 10−3 3.1 × 10−3 3.6 × 10−3 

 

 

5. Conclusions 
This paper proposes a novel class of fuzzy systems based on the idea of having a continuous infinite rule base and 

membership functions. The proposed form is shown to be unlimited in range, free of membership function design 
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requirements, employing only fuzzy variables, and of low complexity for calculating the defuzzified output. The SF system 

is then used along with the convolution theorem to develop a technique for system modeling. The results of these case studies 

show that the presented method is capable of modeling not only static functions, but also dynamic systems. 

Future research on SF systems should concentrate on four areas: (i) to use the scaling factor in the mother membership 

functions to develop a multiscale fuzzy system, (ii) to develop a recursive method for training the system, (iii) to develop 

modeling method with a second order function as the consequent of the fuzzy rules, and (iv) to investigate the effect of the 

size of data on the accuracy of the developed method compared to other machine learning methods. 
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