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Abstract - The importance of electric load prediction and estimation in power system operation is undoubtable since it provides 

economic generation and planning. Electric load is modeled using a discrete-time model depending on previous load and weather 

variables. Electric load estimation is derived using time varying, time invariant, steady state and periodic steady state Kalman filters. 

Electric load prediction is also derived. The algorithms’ efficiency is tested trough simulation results. 
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1. Introduction 
Electric load estimation has always been of indisputable importance for the reliable operation of the power grid. 

Forecasting techniques have been used for management and planning [1]-[5]. Renewable Energy Systems penetration 

created the need for accurate short-term forecasting techniques [6]-[12]. In general, the electric load models mentioned in 

literature are designed to solve specific load forecasting problems and are divided into three basic groups [11]: a) models 

that depend only on previous values of the load, called non-weather sensitive models, b) models that depend on the 

weather variables, called weather sensitive models and c) hybrid models. More specifically, in the cases of weather 

sensitive models or hybrid models, discrete time models describing the electric load have been proposed in [8], [12]. 

Especially, Kalman filtering techniques have been applied to forecast the electrical load [8], [12]-[13]. Also, in [14], 

Kalman and Lainiotis filter have been used for short-term electric load estimation.  

In this paper we continue to investigate the potential of Kalman filter for short-term electric load estimation. We 

consider the hybrid model proposed in [8] and we focus on steady state and periodic Kalman filters development. Also a N 

steps ahead prediction algorithm is proposed. The model and the developed Kalman filters are presented in section 2. The 

contribution of the paper concerns (a) the derivation of steady state Kalman filter and Finite Impulse Response form (FIR 

form) of the steady state Kalman filter, (b) the derivation of periodic steady state Kalman filter. In Section 3 simulation 

results are presented. Section 4 summarizes the conclusions.  

 

2. Weather Sensitive Model and Kalman Filters 
In this section paper we are going to present the discrete-time model depending on previous load and weather 

variables, which is used for the describing the electric load. We are also going to develop Kalman filters in order to 

estimate and predict the electrical load. 

 
2.1. Weather Sensitive Model 

In this paper we consider the hybrid model proposed in [8], where the variation of electrical load depends on previous 

loads and weather data (temperature and wind). The state x(k) consist of has n = 10 elements concerning weather 

parameters described in [8]. The measurement z(k) is m = 1 element, the electric load. The discrete time varying model 

has as follows: 

x(k + 1) = F ∙ x(k) + w(k) (1) 

z(k) = H(k) ∙ x(k) + v(k) (2) 

for time k ≥ 0. 
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The model parameters are: (a) the n × n transition matrix F = I (identity matrix), (b) the m × n output matrix 

H(k) derived by the model parameter identification [8], (c) the n × n covariance Q = I of the zero mean Gaussian 

state noise w(k) and (d) the covariance R = 1 of the zero mean Gaussian measurement noise v(k). The state x(0) is a 

Gaussian random variable with mean x0 and covariance P0. 

 
2.2. Kalman Filters 

We are going to develop Kalman filters [15]-[17] in order to estimate and predict the electrical load. Kalman filter 

produces the state prediction x(k + 1/k) and the corresponding prediction error covariance P(k + 1/k), as well as the 

state estimation x(k/k) and the corresponding estimation error covariance P(k/k). Certainly it is possible to develop 

the Lainiotis filters [17]-[18], which are equivalent to Kalman filters [17], since they compute the same estimations 

and estimation error covariances as Kalman filters do, given the same initial conditions. 

Working as in [14], we consider the noiseless electric load y(k) = H(k) ∙ x(k). Then the estimation and the 

estimation error covariance are: 

y(k/k) = H(k) ∙ x(k/k) 

c(k/k) = H(k) ∙ P(k/k) ∙ HT(k) 

and the prediction and the prediction error covariance are: 

y(k + 1/k) = y(k/k) 

c(k + 1/k) = c(k/k) + H(k) ∙ HT(k) 

The time variability of H(k) leads to the time varying Kalman filter derivation: 

 

Time Varying Kalman Filter (TVKF) 

x(k + 1/k) = x(k/k) 

P(k + 1/k) = I + P(k/k) 

K(k + 1) =
P(k + 1/k) ∙ HT(k + 1)

H(k + 1) ∙ P(k + 1/k) ∙ HT(k + 1) + 1
 

x(k + 1/k + 1) = [I − K(k + 1) ∙ H(k + 1)] ∙ x(k + 1/k) + K(k + 1) ∙ z(k + 1) 

P(k + 1/k + 1) = [I − K(k + 1) ∙ H(k + 1)] ∙ P(k + 1/k) 

y(k/k) = H(k) ∙ x(k/k) 

c(k/k) = H(k) ∙ P(k/k) ∙ HT(k) 

y(k + 1/k) = y(k/k) 

c(k + 1/k) = c(k/k) + b(k) 
where 

b(k) = H(k) ∙ HT(k) 
 

Assuming that H(k) is periodic with period p = 24 as derived by the model parameter identification [8] (the 

period can be assumed in a week / month / year basis). In this case TVKF is developed with  H(k) = H(k mod 24). 

The assumption that H(k) = H computed as the mean of H(k), leads to the time invariant Kalman filter 

derivation: 

 

Time Invariant Kalman filter (TIKF) 

x(k + 1/k) = x(k/k) 

P(k + 1/k) = I + P(k/k) 

K(k + 1) =
P(k + 1/k) ∙ HT

H ∙ P(k + 1/k) ∙ HT + 1
 

x(k + 1/k + 1) = [I − K(k + 1) ∙ H] ∙ x(k + 1/k) + K(k + 1) ∙ z(k + 1) 

P(k + 1/k + 1) = [I − K(k + 1) ∙ H] ∙ P(k + 1/k) 
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y(k/k) = H ∙ x(k/k) 

c(k/k) = H ∙ P(k/k) ∙ HT 

y(k + 1/k) = y(k/k) 

c(k + 1/k) = c(k/k) + b 
where 

b = H ∙ HT 

H = [27.22 0.54 0.83 −0.43 0.02 −0.64 0.19 0.38 0.08 0.03] 
 

The observation that there exists steady state [14] leads to the steady state Kalman filter derivation: 

 

Steady State Kalman Filter – SSKF  

y(k + 1/k + 1) = A ∙ y(k/k) + B ∙ z(k + 1)    

A =
2

2 + b + √b2 + 4b
= 0.00134 

B =
b + √b2 + 4b

2 + b + √b2 + 4b
= 0.99866 

Note that the coefficients A and B are calculated off-line by first solving the corresponding discrete time Riccati equation 

emanating from Kalman filter [15], [17].  

 

From the estimation equation of SSKF we get:  

y(k/k) = Ak ∙ y(0/0) + Ak−1 ∙ B ∙ z(1) + ⋯ + B ∙ z(k) 

We observe that |A| < 1. It is obvious that the integer positive powers of A tend to zero. Hence there exists a positive 

integer M, such that AM−1 > ε and AM+i ≤ ε, i = 0,1, . .., where ε is a small positive real number. It is evident that the value 

of  M  depends on the choice of the convergence criterion ε. Assuming that z(k) = 0, k < 0, the Finite Impulse Response 

form (FIR form) of the steady state Kalman filter is derived: 

 

FIR form of Steady State Kalman (FIRSSKF) 

y(k/k) = ∑ {Aj ∙ B ∙ z(k − j)}

M−1

j=0

 

Remarks. 

1. The FIRSSKF coefficients are calculated off-line.  

2. The estimation depends only on a well-defined set of measurements. 

 

The fact that the output matrix H(k) is periodic with period p = 24  leads to the conclusion that we are able to derive 

periodic steady state filters [19]-[20] with periodic steady state coefficients, which are computed by solving the periodic 

Riccati equation [21]. Then the periodic steady state Kalman filter is derived: 

 

Periodic Steady State Kalman Filter (PSSKF) 

y(k + 1/k + 1) = A(k) ∙ y(k/k) + B(k) ∙ z(k + 1) 

where the periodic steady state coefficients are periodic with period p = 24: 

A(k) = A(kmod24) 

B(k) = B(kmod24) 
and can be computed off-line by solving the corresponding periodic Riccati equation.  

 

The periodic coefficients of PSSKF (period p = 24) are depicted in Figure 1. 
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Fig. 1: The periodic coefficients of the PSSKF. 

 

We observe that a steady state filter can be designed by defining the steady state coefficients as the mean values 

of the periodic steady state coefficients of the PSSKF. It is evident that the coefficients of the new filter are calculated 

off-line. The derived “mean” periodic steady state Kalman filter is:  

 

Mean Periodic Steady State Kalman Filter (MPSSKF) 

y(k + 1/k + 1) = A ∙ y(k/k) + B ∙ z(k + 1)    

A = 0.02845 

B = 0.97155 
 

Finally, we are going to develop a prediction algorithm. The prediction N steps ahead and the corresponding 

prediction error covariance are given in the N steps ahead prediction algorithm: 

 

𝐍 steps ahead Prediction 

x(k + N/k) = Φk+N,k+1 ∙ x(k + 1/k) 

P(k + N/k) = Φk+N,k+1 ∙ P(k + 1/k) ∙ Φk+N,k+1
T + ∑ Φk+N,i ∙ Q ∙ Φk+N,i

T

k+N−1

i=k+1

 

where 

Φk,ℓ = F(k, k − 1) ∙ … ∙ F(ℓ + 1, ℓ), k > ℓ 

Φk,k = I 
In the hybrid sensitive model case, where F = I, we derive: 

x(k + N/k) = x(k + 1/k) = x(k/k)  

P(k + N/k) = P(k + 1/k) = (N − 1) ∙ Q 

Note that the one step ahead prediction is equal to the estimation, due to the fact that F = I.  
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3. Simulation Results 
The behaviour of the developed Kalman filters on the same data (measurements) is investigated. For the hybrid 

weather sensitive model presented in section II, the TVKF, TIKF, SSKF, PSSKF and MPSSKF are implemented. 

Figure 2 depicts the results for electric load estimation using TVKF, TIKF, SSKF, PSSKF and MPSSKF using 

measurements generated from the weather sensitive model, for 1 day (24h). All Kalman filters perform equally well and 

they follow the trend of the actual load curve.  

 

 
Fig. 2: Electric load estimation using measurements generated by the weather sensitive model. 

 

For the non-weather sensitive model presented in [14], the TVKF, TIKF, SSKF, PSSKF and MPSSKF are 

implemented. Figure 3 depicts the results for electric load estimation using TVKF, TIKF, SSKF, PSSKF and MPSSKF 

using measurements generated from the non-weather sensitive model, for 1 day (24h). All Kalman filters adapt to the 

actual load. 

 

 
Fig. 3: Electric load estimation using measurements generated by the non-weather sensitive model. 
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For randomly (normal distribution) generated measurements, the TVKF, TIKF, SSKF, PSSKF and MPSSKF are 

implemented. Figure 4 depicts the results for electric load estimation using TVKF, TIKF, SSKF, PSSKF and MPSSKF 

using randomly generated measurements, for 1 day (24h). All Kalman filters adapt to the actual load. 
 

 

 
Fig. 4: Electric load estimation using randomly generated measurements. 

 

Finally, in order to investigate the efficiency of the developed Kalman filters, we use the mean absolute 

percentage error (MAPE) with respect to the actual load: 

MAPE =
100

24
∙ ∑

|y(j/j) − y(j)|

y(j)

24

j=1

 (3) 

where y(j) is the actual electric load and y(j/j) is the electric load estimation. 

Table 1 summarizes the results for the mean absolute percentage error with respect to the actual load for TVKF, TIKF, 

SSKF, PSSKF, MPSSKF on a 24h basis. All algorithms perform well. The mean absolute percentage errors between the 

actual and estimated loads are low.  
 

Table 1: Mean absolute percentage error of Kalman filters. 

Kalman filter 
measurements generated by 

weather sensitive model 

measurements generated by 

non-weather sensitive model 

measurements generated 

randomly 

TVKF 0.0776 0.8021 0.1333 

TIKF 0.0782 0.0004 0.0001 

SSKF 0.0784 0.0001 0.0001 

PSSKF 0.3612 0.1871 0.1871 

MPSSKF 0.2800 0.0390 0.0301 

 

4. Conclusion 
Load forecasting has been of paramount importance for the smooth and reliable operation of the power grid. The 

hybrid model proposed in [8] was considered. Kalman filters have been designed in order to estimate electric load 

curves.  

In fact we focused on the derivation of steady state Kalman filter, FIR form of the steady state Kalman filter and 

periodic steady state Kalman filter. This is feasible a) by taking advantage of model parameter identification [8] and b) 
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by converting the time varying model to time invariant model, the parameters of which can be derived by taking into 

account the mean of the model parameters in a period (the period can be assumed in a day/ week / month / year basis). 

Definitely it is possible to develop the - equivalent to Kalman filters [17] - Lainiotis filters.  

More specifically time varying, time invariant, steady state and periodic steady state Kalman filters have been 

designed and implemented for hybrid weather insensitive model.  Also a N steps ahead prediction algorithm based on 

Kalman filter was proposed. 

All the proposed filters produce acceptable results: the filters are able to follow the load curves with a low mean 

absolute percentage error, as it is shown in Table 1. Time varying Kalman filter produces more accurate estimations for 

measurements generated by the hybrid weather sensitive model [8]. Steady state Kalman filter produces more accurate 

estimations for measurements generated from for the non-weather sensitive model [14] or generated randomly. Steady state 

and periodic steady state Kalman filters have less memory and calculation requirements than time varying and time 

invariant Kalman filters, as it results from the filters’ equations. The results demonstrate the great potential of Kalman 

filters for short term load forecasting. 
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