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Abstract – The electric properties of an interface between an electrode and a neuron are highly dependent on interface geometry and 

other parameters. Finite element models can be used to study these properties to a certain extent. Unfortunately, such models are 

computationally very expensive. By reducing these models, the computational time can be decreased. In this work, we use Krylov-

subspace based model order reduction to reduce a simplified, linearized finite element model of an electrode-neuron interface. This 

facilitates the coupling to the Hodgkin-Huxley model at system level and reduces the computational time considerably. The accuracy of 

the original finite element model is preserved to a large extent. 
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1. Introduction 
Implantable neural interfaces are widely used in medical applications. They are also subject to research with different 

priorities, for example improving the medical treatment of patients or focusing on recording signals leading to a better 

understanding of the brain’s function [1]. In all of these applications, the interface between electrodes and neurons has an 

important effect on the achieved result [2–4]. In vitro cultures of neuronal networks on microelectrode arrays can be used to 

study such effects [2, 4, 5]. 

 Finite element models offer the possibility to simulate the interaction between electrodes and neurons. In [2], the authors 

investigated the electrical contact between a neuron placed on a planar substrate electrode using a finite element model. In 

[3, 6, 7], the Hodgkin-Huxley model [8] was combined with a similar finite element model. In [9], two modelling approaches 

are explained in detail: The hybrid approach, combining a finite element model of the electrical potential field with the 

calculation of the neuron’s response using the cable equation, and a full finite element approach, allowing the simultaneous 

calculation of intracellular and extracellular potentials. The authors of [4] use a finite element model to examine the influence 

of neuronal morphology on the shape of extracellular recordings with microelectrode arrays. 

Depending on the complexity of the model, computational times can be very long. Model order reduction (MOR) is an 

efficient tool to reduce computational times and memory requirements, while maintaining good accuracy of the original 

model. In general, the electrical behaviour of neurons is highly nonlinear and can be described by the Hodgkin-Huxley model 

[8]. Krylov-subspace based MOR can be used to replace the linear part of the electrical model by a surrogate of much smaller 

dimension, thereby reducing, the computational complexity of the entire system [10]. In this work, we use Krylov-subspace 

based model order reduction to reduce a finite element model of a neuron-electrode interface, which contains linear 

components of the Hodgkin-Huxley model. The remaining nonlinear features are subsequently connected to the reduced 

order model at system level. 

Section 2 explains the setup of the entire model. The finite element model is introduced and the system level design of 

the complete model is described in detail. The Krylov-subspace based MOR methodology is explained in Section 3. Our 

simulation results are presented in Section 4. In Section 5 we summarize our findings and give an outlook to future work. 

 

2. Case Study: Neuron-Electrode Interface 
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The Hodgkin-Huxley model describes the transmembrane current density as a sum of capacitive and ionic 

components [11]: 

𝑖𝑚 = 𝑐𝑚

𝑑𝑉𝑚

𝑑𝑡
+ (𝑉𝑚 − 𝑉𝑁𝑎)𝑔𝑁𝑎𝑚3ℎ + (𝑉𝑚 − 𝑉𝐾)𝑔𝐾𝑛4 + (𝑉𝑚 − 𝑉𝐿)𝑔𝐿 (1) 

𝑖𝑚 is the transmembrane current per unit area, 𝑐𝑚 is the membrane capacitance per area, and 𝑉𝑚 is the membrane voltage. 

𝑉𝑁𝑎, 𝑉𝐾, 𝑉𝐿 are the Nernst voltages for sodium, potassium, and leakage ions per area. The Nernst voltage describes the 

membrane potential at which the current flow due to electric forces cancels the diffusive flow, if the membrane was 

permeable to only this specific kind of ion [11, 12]. 𝑔𝑁𝑎, 𝑔𝐾, 𝑔𝐿 are the maximum sodium, potassium, and leakage 

conductance per area, and 𝑚, ℎ, and 𝑛 are gating variables, describing the opening state of the corresponding ion channel [4, 

8, 11]. The gating variables are defined by differential equations according to [8], using a resting potential of 𝑉𝑟 = −65 mV. 

Our model consists of two parts. A finite element model of a cultured neuron placed on top of a planar electrode 

forms one part. The neuron and the surrounding culture medium are modelled as volume conductors. The membrane 

representation in the finite element model only describes a cross-membrane conductivity and a membrane capacitance. 

The other part, which describes the major part of the Hodgkin-Huxley membrane properties [8], is connected at system 

level and will be described in Section 2.2. 

 

 
2.1. Finite Element Model 

In our previous work [13], we adopted the finite element model of a cultured neuron and an electrode proposed in 

[2]. The finite element model presented here builds on the one presented in [13]. Our model, which is built using the 

software ANSYS version 2022 R1, is shown in Figure 1. A neuron is placed on top of a planar electrode and covers it 

completely. Only the soma (the cell body) of the neuron is modelled. The axon and dendrites are not represented. The 

neuron model has an elliptical profile with height ℎ𝑛 = 5 μm and radius 𝑟𝑛 = 7 μm. It has a conductivity of 𝜎𝑛 = 1.43 

S/m. Culture medium encloses the neuron with a conductivity of 𝜎𝑚 = 1.65 S/m. The electrode (radius 𝑟𝑒 = 5 μm) is 

placed at the bottom of the lower culture medium. It is represented by a surface body. Its finite element nodes are coupled 

at the same electric potential. Electro-chemical effects, which can occur at the interface between the electrode and the 

culture medium, are not considered in our model. A narrow sealing gap of 10 nm thickness between substrate and neuron, 

filled with culture medium, is implemented with a thickness of 0.5 μm. Its material parameters are adjusted 

proportionally as proposed in [2]. 

The neuronal membrane is not represented by a voluminous body. Only the portion of the membrane, which is 

modelled as part of the finite element model, is described in this Section. As shown in Figure 2, the membrane is divided 

into an upper and a lower part. The nodes of the respective surfaces are coupled in the voltage domain. The lower 

membrane above the electrode and the upper membrane are each modelled using one lumped resistor, representing the 

leakage resistance, and a lumped capacitor, representing the membrane capacitance. The leakage conductivity per area 

of the membrane is 𝐺𝐿 = 0.3 mS/cm2, and the capacitance per area is 𝑐𝑚𝑒𝑚 = 0.1 μF/ cm2 [14]. 

The sealing gap is divided into three rings (only one node of the middle ring is shown in Figure 2). The nodes of 

each ring are also coupled in the voltage domain. Each ring is connected to the neuron with one resistor and one capacitor 

in parallel, each component having the conductivity or the capacitance according to the area it represents. This is 

possible, because we only consider the concentric scenario where the neuron covers the electrode completely. In a more 

general case, where the neuron is placed off-center, our approach is not applicable as the potential varies with angular 

and radial coordinates. Also, a more detailed representation of the neuron including dendrites and axon is not possible 

with this approach. 

A boundary condition of 0 V is imposed on the surface of the outer domain boundary of the culture medium and 

the sealing gap. This represents a counter electrode, which is far away from the neuron-electrode interface. Exploiting 

symmetry, the finite element model represents only one half of the interface. The other half is accounted for by a 

symmetry boundary condition. 
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Figure 1: Model of our simplified neuron-electrode 

interface, based on [2]. A neuron is placed on a planar substrate 

electrode. The substrate is not part of the finite element model. 

Culture medium surrounds the neuron. A narrow sealing gap of 

10 nm thickness between substrate and neuron is implemented 

with a thickness of 0.5 μm. Its material parameters are adjusted 

accordingly. The white marks show the points used for 

comparison of the electric potential between the full order model 

and the reduced order model. 

Figure 2: For the membrane representation in the finite 

element model, the voltage degrees of freedom have been 

coupled at the surfaces of the culture medium which touch the 

neuron, at the upper, and at the lower surface of the neuron. A 

lumped resistor and a lumped capacitor are inserted, which 

represent the leakage resistance and the membrane capacitance 

of the top and bottom part of the membrane. The contact 

between the sealing gap and the neuron is modelled in a similar 

manner. The sealing gap is divided into three rings (for clarity, 

only one node of the middle ring is shown here). Each ring is 

coupled in the voltage domain and connected to the lower 

surface of the neuron with a resistor and a capacitor in parallel. 

 
2.2. System Level Model 

After reduction of the finite element model, the reduced order model is transformed into a system-level representation. 

As such, it can be co-simulated with electrical circuits, that is, connected to realistic current sources, filters, amplifiers, and 

other electrical components [13]. The system level representation is created using the VHDL-AMS standard [15] and then 

imported into Ansys Twin Builder version 2022 R1. It has one input pin called ‘elec’, where the stimulus current can be 

applied to the electrode. Furthermore, four pins, each representing one of the surfaces of the membrane, allow the connection 

of the respective membrane nodes via a circuit, simulating Hodgkin-Huxley dynamics (see Figure 3).  

The Potassium and Sodium branches are completely modelled at system level. Since the voltage source of the leakage 

branch is not included in the reduced order model, it has to be represented at system level, too. This was achieved by 

connecting an equivalent current source (𝐼𝐿) in parallel [16]. A voltmeter measuring the transmembrane voltage delivers the 

necessary data to calculate the transfer rate coefficients. The ionic conductance is calculated in a separate system of equation 

blocks. 
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Figure 3: System level model of the reduced order model with its six pins. A current source can be connected to the electrode. 

The remaining circuit elements necessary to model the Hodgkin-Huxley dynamics [8], which are not included in the finite element 

model, can be connected between nodes representing the upper and lower membrane, and the membrane at the sealing gap. 

 

 

3. Model Order Reduction 

The process of model order reduction follows the method described in [13]. The partial differential equation for 

electric scalar potential can be written as: 

 

−∇ ∙ ([𝜎] ∇V) − ∇ ∙ ([𝜀]∇
∂V

∂𝑡
) = 0 (2) 

 

where [σ] is the electrical conductivity matrix, [ε] is the permittivity matrix, V is the scalar electric potential, and 𝑡 is the 

time. The numerical analysis of the simplified neuron-electrode interface is carried out by finite element method. After 

spacial discretization, Equation 2 can be represented as a system of n ordinary differential equations: 

 

∑ {
𝐶�̇�(𝑡) + 𝐺𝑥(𝑡) = 𝐵𝑢(𝑡)

𝑦(𝑡) = 𝐸𝑇𝑥(𝑡)
𝑛

 (3) 

 

with state vector 𝑥(𝑡) ∈ 𝑅𝑛, input vector 𝑢(𝑡) ∈ 𝑅𝑛, output vector 𝑦(𝑡) ∈ 𝑅𝑝, permittivity matrix 𝐶 ∈ 𝑅𝑛×𝑛, 

electrical conductivity matrix 𝐺 ∈ 𝑅𝑛×𝑛, input distribution matrix 𝐵 ∈ 𝑅𝑛×𝑚, and output matrix 𝐸 ∈ 𝑅𝑛×𝑝. 

Krylov based MOR [10] approximates Equation 3 by a system of the same form, but with much smaller order 𝑟: 

 

∑ {
𝐶𝑟�̇�(𝑡) + 𝐺𝑟𝑧(𝑡) = 𝐵𝑟𝑢(𝑡)

𝑦(𝑡) = 𝐸𝑟
𝑇𝑧(𝑡)

𝑛

 (4) 

 

where 𝑧 ∈ 𝑅𝑟 is the state vector of the reduced order model. Further, permittivity matrix and electrical conductivity 

matrix 𝐶𝑟, 𝐺𝑟 ∈ 𝑅𝑟×𝑟, input distribution matrix 𝐵𝑟 ∈ 𝑅𝑟×𝑚, output matrix 𝐸𝑟 ∈ 𝑅𝑟×𝑝, and 𝑟 ≪ 𝑛. Equation 4 is gained 

by an orthonormal projection of Equation 3 onto the right Krylov-subspace, defined as: 
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𝐾𝑟
𝑅 = 𝑠𝑝𝑎𝑛{𝑟, 𝐴𝑟, 𝐴2𝑟, … , 𝐴𝑟−1𝑟} (5) 

 

with 𝐴 = −𝐺−1𝐶 and 𝑟 = −𝐺−1𝐵. It holds 𝐶𝑟 = 𝑉𝑇𝐶𝑉, 𝐺𝑟 = 𝑉𝑇𝐺𝑉, 𝐵𝑟 = 𝑉𝑇𝐵, and 𝐸𝑟 = 𝑉𝑇𝐸, where V is an 

orthonormal basis of Equation 4 𝑐𝑜𝑙𝑠𝑝𝑎𝑛{𝑉} = 𝐾𝑟
𝑅, which is created by the Block Arnoldi algorithm [10]. An inherent 

property of the Krylov subspace is, that the transfer functions 𝐻(𝑠) and 𝐻𝑟(𝑠) of Equations 3 and 4 respectively, when 

expanded into a Taylor series around some point 𝑠0: 

 

𝐻(𝑠) =  𝐸𝑇(𝐺 + 𝑠𝐶)−1𝐵 = ∑ 𝑚𝑖(𝑠 − 𝑠0)−1

∞

0

 (6) 

𝐻𝑟(𝑠) =  𝐸𝑟
𝑇(𝐺𝑟 + 𝑠𝐶𝑟)−1𝐵𝑟 = ∑ 𝑚𝑟𝑖

(𝑠 − 𝑠0)−1

∞

0

 (7) 

 

match in the first 𝑟 coefficients: 𝑚𝑖 = 𝑚𝑟𝑖
, 𝑖 = 0, … , 𝑟. These coefficients are called moments or Markov parameters 

(depending on the chosen expansion point) and are defined as 𝑚𝑖 = (−1)𝑖𝐸𝑇(𝐺−1𝐶)𝑖𝐺−1𝐵 for 𝑖 = 0,1,2, …. 

We deploy the implementation within “Model reduction inside Ansys” [17]. 
 

4. Numerical Simulation Results 
We first create the linear finite element model in Ansys. Then, this model is reduced and compared to the original full-

size model. Finally, it is coupled to the nonlinear part of the Hodgkin-Huxley model at system level.  

All simulations are carried out using an Intel Xenon Processor (Skylake, IBRS) with 2.99 GHz (2 Processors with 6 

cores each). A 0.5 nA stimulus current is applied to the electrode during a transient simulation. The full order model (FOM) 

has 8245 degrees of freedom and the reduced order model (ROM) has 30 degrees of freedom. It takes approximately 0.35 

seconds to construct the reduced order model. After construction, the ROM can be used for multiple simulations without 

having to create it again. While it takes 69 seconds to calculate transient solution of the FOM, it only takes 2.2 seconds to 

calculate the ROM (see Table 1). The computational time is therefore reduced to 3.2% of the time necessary to calculate the 

FOM.  

Table 1: CPU time comparison between FOM and ROM Intel Xenon Processor (Skylake, IBRS) with 2.99 GHz (2 Processors 

with 6 cores each) 

 FOM ROM 

Number of DOFs 8245 30 

Computational time [s] 69 2.2 

 

Figures 4 and 5 show the comparison between the potential development over time. Here, an expansion point of 𝑠0 = 0 

is used. The reduced order model matches the full order model very well. At the electrode, a maximum relative error of only 

4.7× 10−11 percent is observed. The relative error inside the neuron increases throughout the simulation to a maximum of 

1.6× 10−10 percent. By altering the expansion point, the error can be influenced at different simulation times. Figure 6 shows 

the relative error of the reduced order model at both points using an expansion point of 𝑠0 = 107. 
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Figure 4: Development of the electric potential at the node 

representing the electrode when applying a 0.5 nA stimulus 

current to the electrode. The ROM matches the FOM very well 

with a maximum error of only 4.7× 10−11 percent. 

 

 

Figure 5: Development of the electric potential at the 

node inside the neuron. The error is increasing throughout the 

simulation to 1.6× 10−10 percent. 

 

 

Figure 6: Error of the reduced order model at the electrode and inside the neuron. The reduced order model is created with an 

expansion point of 𝑠0 = 107. 

At system level, the remaining circuit elements for the Hodgkin-Huxley representation are connected according to 

Section 2.2. We connected an ideal current source to the electrode and conducted a transient simulation for 90 ms with 

a stepsize of 0.04 ms. The electrode is stimulated with -5 nA between 40 seconds and 60 seconds of simulation time. 

The voltage development at the membrane and at the electrode is shown in Figure 7. The initial condition for the 

simulation is a potential of 0 volt in the entire domain. This leads to a long stabilization process for the first 32 ms, 

before the resting potential of -65 mV is reached. An action potential is created like in [3] (however, the authors of [3] 

used a different geometry and different stimulation parameters). The simulation took 8.66 seconds. 
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Figure 7: Hodgkin-Huxley membrane properties are combined with the reduced order model on system level. The electrode is 

stimulated with -5 nA between 40 seconds and 60 seconds of a transient simulation. In the beginning, an initial condition of 0 volt in 

the whole domain leads to a long stabilization process until a resting potential of -65 mV is reached. During stimulation, an action 

potential is created. The complete simulation took 8.66 seconds. 

 

5. Conclusion and Outlook 
In this work we used Krylov-subspace based model order reduction to reduce computational complexity of a linear finite 

element model of a neuron-electrode interface. We then connected the remaining nonlinear elements of the Hodgkin-Huxley 

membrane representation to the system level version of the reduced order model. We were able to significantly reduce the 

computational time for the finite element model while keeping the error of the reduced order model very small. 

However, the method presented here does not hold for the general case. By coupling nodes of surfaces with similar 

potential in the voltage domain, we kept the number of Hodgkin-Huxley circuits, which had to be added on system level, 

small. Clearly, this method only works with our symmetric geometry. Moving the neuron off-center or changing the elliptical 

profile of the neuron to a more detailed geometry including axon or dendrites will make it impossible to couple the nodes in 

the different parts of the membrane.  

In the future, it is therefore necessary to include the complete Hodgkin-Huxley dynamics in the finite element model, 

which will make it nonlinear. We plan to develop and employ suitable methods of model order reduction. A promising 

approach is MOR via artificial neural networks [18]. 
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