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Abstract – Monitoring of public postings on social media platforms, such as Twitter, offers a valuable opportunity to detect events as 

they happen. Building off existing approaches for event detection, we evaluated the use of a pre-trained named entity recognition model 

followed by graph-based spectral clustering to detect events. We also examined transformer-based approaches for weighting the edges 

of the graph for event detection. Unlabeled events in the dataset we detected and verified are described. 
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1. Introduction 
User-created social media content provides an invaluable resource for monitoring events across the globe. Using social 

media to detect events in a particular geographic area in real-time can enable more prompt responses to accidents, natural 

disasters, public health concerns, and security incidents. Twitter is an important social media platform for this purpose, 

given its ongoing popularity, volume of publicly accessible data, and concise format. As natural language processing 

(NLP) methods become more sophisticated, discovering more robust, nuanced, and scalable approaches to general event 

detection via Twitter continues to be an active field of research [1]–[6].  

Here, we build off an existing approach, Metadata-Assisted Twitter Event Detection (MaTED) [1]. The MaTED 

approach consists of four main components, including detection of important phrases from tweets, creating temporal 

profiles of these phrases to identify “bursty” phrases, clustering bursty phrases with an aim to group related phrases about 

an event, and characterizing an event from the clusters obtained. We evaluated three major changes to this tweet-

processing pipeline for event detection (Fig. 1). 

First, we evaluate a simplified approach to named entity recognition (NER). MaTED introduced the use of DBPedia 

[7], [8] to identify named entities and WordNet [9] to assist in identifying event-specific words and phrases. To eliminate 

this requirement and provide a more lightweight alternative, we utilize a pre-trained spaCy [10] model for NER. 

Secondly, we utilize an alternative similarity measure for clustering of bursty phrases. MaTED adopted an approach 

from Twevent [11], where the term frequency-inverse document frequency (TF-IDF) similarity metric is used for 

clustering bursty phrases using a graph-based clustering approach [12]. In contrast, we evaluate a semantic similarity 

metric based on Bidirectional Encoder Representations from Transformers (BERT) [13] to weight the edges of graphs.  

 

 

Fig. 1: Twitter event detection pipeline. Adapted from MaTED [1], except spaCy is used for named entity recognition, a transformer-

based similarity measure is used during graph formation, and the graph is embedded in a lower-dimensional space before clustering. 
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Finally, we modify the graph-based clustering algorithm to utilize manifold learning. While MaTED simply forms a 

nearest neighbors graph and takes the connected components as events, we use spectral clustering that first embeds the 

graph in a lower dimensional space before clustering using a density-based algorithm like k-means. This renders the 

clustering more robust to the choice of the number of neighbors, while still allowing for automatic detection of the number 

of clusters. 

 
2. Methods 

To evaluate methods for Twitter event detection, we utilized the Events2012 corpus, which contains 120 million 

tweets and 506 labeled events [14]. We first divided tweets into time buckets. We chose one hour-long increments to 

identify shorter events. This choice may come at the expense of identifying events evolving over a longer timescale, but it 

may capture specific portions of these events. We then extracted tweet metadata and contextual information, such as 

favorites, retweets, and titles of linked webpages. We used spaCy’s pretrained NER model [15], a transition-based parser, 

to extract key phrases. Each named entity was assigned a “burstiness” score within each time window corresponding to 

how often it appeared in that window relative to every other window [1]. This score is multiplied by the log of the number 

of followers, favorites, and retweets to weight tweets by engagement similar to MaTED’s approach. A subset of the entities 

with the highest scores was selected as those potentially corresponding to events. As in MaTED, we selected √ , where 

  is the number of entities. 

Entities in each window were associated with one another to identify events through a graph-based clustering 

algorithm. Each entity was identified as a node in a graph connected to a subset of other nodes by edges. We evaluated two 

different similarity metrics for edge formation. In the first, as in MaTED, for each entity we concatenated all tweets 

containing that entity into one document. We then calculated the TF-IDF similarity between each pair of entity documents, 

and each entity was connected by an edge to its    most similar entities. Alternatively, we evaluated a transformer-based 

similarity metric. We anticipated that this would more effectively capture semantic similarity between tweets, as words 

with similar meanings generally have similar embeddings in the pretrained model. A tweet   is fed to a BERT model 

pretrained on a large corpus of tweets [16], then the final hidden layer is averaged among all words to obtain a sentence 

embedding  ( ). The similarity between two documents    and    is then given by the average cosine similarity between 

tweets in the two documents: 
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In MaTED, clustering ends here – the events are identified by the connected components of the resulting graph. While 

this method is robust to non-convex clusters, this clustering is highly dependent on the choice of  . To remedy this, we 

utilized manifold learning [17]. We assume that while the graph is embedded in a high-dimensional space, it lies on a 

lower-dimensional manifold on which the clusters are approximately convex. To perform spectral clustering, we utilize the 

graph Laplacian:  

        (2) 

 

where   is the degree matrix (in this case simply the identity) and   is the adjacency matrix. Since the adjacency matrix is 

not necessarily symmetric, we take the symmetric Laplacian: 

 

        (    ) (3) 

 

We then project onto the first   eigenvectors to give the embedding. This projection “unfolds” the manifold into the lower-

dimensional space (Fig. 2). We then clustered using  -means with      for each time window. Since the number of 
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events is not known, a more effective solution would be to use a clustering algorithm like OPTICS [18] or affinity 

propagation [19] that automatically identifies the number of clusters. However,  -means suffices for successfully 

identifying events that are not labeled in the dataset. 

 
Fig. 2: 3D projection of entity nodes after spectral embedding, with colors corresponding to clusters. Note that because the 

embedding space is greater than three dimensions, clusters do not necessarily appear convex. 

 

3. Results and Discussion 
As the semi-supervised labeling of events in the dataset is not exhaustive, and in some cases is incorrect, precise 

quantification of model performance is intractable. However, we can see that many identified clustered in fact correspond 

to labeled events in the dataset. For example, when examining tweets from October 10
th
, 2012, one cluster of named 

entities identified by the system is “Pakistan, Malala, Taliban, Pakistani, Malala Yousafzai, Faridabad, Shyam Benegal, 

Radio Pakistan.” This successfully identifies the event “Malala Yousafzai, a 14-year-old activist for women's education 

rights is shot by Taliban gunmen in the Swat Valley.” Another cluster of words, “12in12, Chris Carpenter, Rockefeller 

Center, Washington, Washington D.C., 79 YEARS, D.C., Nationals, Carp, STLCards, Cards,” corresponds to the event 

“St. Louis Cardinals win their National League Divisional Series against the Washington Nationals.” 
Our system additionally succeeds in identifying events that happened during the given timeframe but that are not in 

the dataset. For example, one cluster contains such entities as Robert Caro, Dave Eggers, and Louise Erdrich, all of whom 

were announced as nominees for the 2012 National Book Awards on October 10
th 

[20]. While this is certainly an event that 

occurred during this time, it is not labeled in the dataset.
 

The BERT-based metric did not identify events that were not present in the TF-IDF metric. As calculating TF-IDF of 

documents is far faster, there is no obvious reason to prefer transformer embeddings. While these embeddings reflect 

semantic similarities between terms, this appears less relevant when events are typically characterized by proper nouns like 

names and places. 

  

4. Conclusion 
We described several modifications to the MaTED system that successfully identifies in an unsupervised manner 

many labeled and unlabled events in the Events2012 Twitter dataset. Our use of named entity recognition streamlines the 

phrase extraction in MaTED, while manifold learning allows for entity clustering to be better tailored to the geometry of 

events. The BERT-based metric did not improve performance compared to TF-IDF. While this pipeline looks at tweets 

only retroactively, it could easily be adapted for live event detection by identifying clusters of entities that are conspicuous 

in the past hour, for example, compared to previous time periods. Utilizing location metadata embedded in tweets would 

allow this system to identify events happening in a particular geographical area, providing insight into localized events as 

they unfold.  
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