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Abstract – The automation of condition monitoring and workpiece inspection plays an essential role in maintaining high quality as 

well as high throughput of the manufacturing process. To this end, the recent rise of developments in machine learning has lead to vast 

improvements in the area of autonomous process supervision. However, the more complex and powerful these models become, the less 

transparent and explainable they generally are as well. One of the main challenges is the monitoring of live deployments of these 

machine learning systems and raising alerts when encountering events that might impact model performance. In particular, supervised 

classifiers are typically build under the assumption of stationarity in the underlying data distribution. For example, a visual inspection 

system trained on a set of material surface defects generally does not adapt or even recognize gradual changes in the data distribution - 

an issue known as "data drift" - such as the emergence of new types of surface defects. This, in turn, may lead to detrimental 

mispredictions, e.g. samples from new defect classes being classified as non-defective. To this end, it is desirable to provide real-time 

tracking of a classifier’s performance to inform about the putative onset of additional error classes and the necessity for manual 

intervention with respect to classifier re-training. Here, we propose an unsupervised framework that acts on top of a supervised 

classification system, thereby harnessing its internal deep feature representations as a proxy to track changes in the data distribution 

during deployment and, hence, to anticipate classifier performance degradation. 
 

Keywords: data drift detection, condition monitoring, model performance monitoring, transfer learning, deep feature 

learning, explainable artificial intelligence 

 

 

1. Introduction 
Today’s increased level of automation in manufacturing also requires the automation of material quality inspection 

with as little as possible human intervention. To stay competitive while meeting industry standards, companies strive to 

achieve both quantity and quality in production without compromising one over the other. However, manual quality 

inspection or extensive equipment tests typically allow only for the analysis of individual samples from a given batch of 

products. With the emergence of vast improvements in the area of Artificial Intelligence, companies begin to employ such 

technologies during the production cycle to automate quality inspection, as well as monitor machine conditions, thereby 

minimizing human intervention, and optimizing factory capacities. Accordingly, a plethora of machine learning based 

condition monitoring and workpiece inspection methodologies and applications have been proposed, including gearbox [1] 

or rotary machinery analyses [2], as well as bearing [3, 4] or steel surface defect detection [5-10], just to name a few. For a 

more in-depth survey on machine learning for condition monitoring we refer the reader to [11, 12] or [13]. 

In contrast, model performance tracking of such classification systems during production is an area less explored. 

However, as discussed in [14], the life cycle of a machine learning system does extend beyond its deployment, and one of 

the big challenges is to design systems that are able to monitor live deployments and take appropriate actions on 

encountering model performance impacting events [15]. One such event may be a gradual or abrupt drift in the data 

distribution. In the case of a deployed machine learning model, this would be the change between real-time production and 

the baseline data set used for initial model training [16]. In general, supervised classification systems are trained under the 

assumption of stationarity in the underlying - in most cases - latent, i.e. non directly observable, data distribution. For 

example, a model that has been trained as a visual inspection classifier for a set of putative material surface defect types, 

generally will not adapt or even recognize gradual changes in the data distribution, such as the emergence of a new type of 

surface defect, which, as a consequence, may then be mispredicted as non-defective. These are critical weaknesses that 
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must be accounted for in deployed classifiers in order to avoid model performance degradation without the user even 

noticing. It has been proposed that, in the absence of labels for live data it is critical to monitor the statistics of input data 

and output predictions as these can serve as a proxy for model performance [17]. A monitoring system requires 

functionality to determine when significant changes to data and predictive distributions happen, also known as drift 

detection [2, 16, 18-24]. A related task is to identify incoming data points which fall outside the training data distribution, 

referred to as outlier detection [14]. Successful drift detection may be used to inform a user that the ongoing production 

data should be inspected and a deployed model may need to be retrained on an augmented dataset. 

Here, we propose a conceptional approach to address the problem of monitoring model performance during production 

by autonomously detecting data drift in an unsupervised fashion (see figure 1). In particular, we want our approach to 

identify drift in the data that may cause false negative predictions or type II errors, that is newly introduced defect types 

being classified as "non-defect" by the original classifier. Hence, the framework harnesses the classifier’s learned internal 

feature representations in order to: i) track and identify anomalies within the latent representation space as the most natural 

way to track the data sample space without imposing an implicit probability distribution; ii) save memory and training time 

by an implicit dimensionality reduction of the input feature space; and iii) allow for the usage of efficient, edge computing 

capable outlier detection algorithms for drift recognition. We perform experiments on two datasets to model different types 

of data drift as well as drift severity in a typical defect classification scenario, i.e. automated, visual quality inspection. 

 

2. Methods 
2.1. Definition of a latent representation space using deep feature embeddings 

The main rationale of our proposed framework is to define a latent representation space by extracting - per training 

sample - the deep feature embeddings provided by the original supervised classifier, and, subsequently, comparing the 

feature representation of any new production sample with the set of training representations to identify putative outliers 

that might indicate a shift in the underlying data distribution, e.g. the emergence of a new defect type for which the original 

classifier has not been trained and may not correctly classify. This way, we may be able to track changes within the 

representation space, although - given the discriminative nature of classifier systems - we may not a priori assume that the 

learned feature representation space constitutes any type of continuous probability distribution. We extract the sample-

based feature representation of the penultimate layer, assuming the classifier to be a typical feed forward type deep neural 

network (see figure 2a). We demonstrate our approach for a classification model trained to distinguish between two 

classes, i.e. "defect" and "non-defect". However, the same rationale can be extended to arbitrary multi-class setups. 
 

2.2. Measuring data drift using Isolation Forests 
In principle, given our latent space representation, a variety of anomaly detection algorithms may be used to detect 

outliers in latent space, ranging from statistical based methods to more recent developments in the area of Deep Learning, 

such as (Variational) Autoencoders [26]. Here, we choose Isolation Forests [27-29], an unsupervised, scalable and non-

parametric outlier detection algorithm with comparatively low computational and memory requirements, making it ideal 

for on-edge computing applications [30]. In addition, one of the major steps in recent outlier detection algorithms such as 

autoencoders is the implicit creation of a reduced feature representation space [24], a putative computationally and training 

data expensive procedure that we avoid by directly applying Isolation Forests on the feature representations already learned 

and provided by the classifier as discussed above. The main rationale of the Isolation Forest framework is to randomly 

generate binary tree structures from subsets of the training data and identify anomalies in each subset as instances with the 

shortest average path length in a given tree, i.e. instances that can be separated from the remaining training set with the 

least number of splits (see figure 2b for an illustration). A single tree is created by: i) sampling a subset from the training 

data; ii) randomly choosing a splitting feature per node; and iii) randomly selecting a splitting value from a uniform 

distribution, spanning from the minimum to the maximum value of the feature selected in the step ii). 
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Fig. 1: Overview of our framework (left) designed to complete the machine learning system’s lifecycle (right). Our framework 

monitors model performance via latent space representation tracking during production and informs about the need for training dataset 

augmentation and re-training. 
 

 Steps ii) and iii) are then repeated recursively, in theory, until all instances from the subset are "isolated" in individual 

leaf nodes. In practice, however, a height limit is generally applied, based on the assumption that outliers may be easier to 

isolate in leaf nodes and thus, on average, do require fewer random splits, resulting in a shorter path length from the root 

node to the leaf node. If, on building the tree, a height limit is applied, some leaf nodes will end up with more training 

instances than others. Therefore, an ensemble of tree models is trained, with outlier scores being averaged across their 

individual outputs to reduce the variance of the model. The outlier score 𝑆 for a particular instance 𝑥 is then computed as a 

function of the average path length from the root to the leaf node compared to the total number m of training instances 

across all constructed trees, i.e.: 

𝑆 𝑥,𝑚 = 2
−
𝐸 ℎ 𝑥  
𝑐 𝑚  

(1) 

 

with 𝐸 ℎ 𝑥   denoting the average search height for 𝑥 across all trees, and 𝑐 𝑚  being a normalization constant for the 

training data subset of size 𝑚, defined as the average depth in an unsuccessful search in a Binary Search Tree, i.e.  𝑐 𝑚 =
2𝐻 𝑚 − 1 − 2  𝑚 − 1 𝑚 . Here, 𝐻 is referred to as the harmonic number, which can be estimated by 𝐻 𝑖 = 𝑙𝑛 𝑖 + 𝛾 

with 𝛾 denoting the Euler’s constant [28]. As a consequence, if  𝐸 ℎ 𝑥  ≪ 𝑐 𝑚 , then 𝑆 𝑥,𝑚 = 1, that is x will most 

certainly be an outlier compared to the remaining m instances. In contrast, if 𝐸 ℎ 𝑥  ≈ 𝑐 𝑚 , then 𝑆 𝑥,𝑚 ≈ 0.5, i.e. x 

may safely be assumed to be a normal instance. In an unsupervised setting, the number of hyper-parameters for the 

Isolation Forest model reduces to selecting the number of trees as well as the training subset sampling size. Since we are 

primarily interested in the detection of type II errors, that is newly introduced defect types being classified as "non-defect" 

by the original classifier, we use the latent space feature representations of the "non-defect" training dataset to train an 

Isolation Forest as data drift detection model for "non-defect" predictions. Hence, during deployment, if a production 

sample has been classified as "non-defective", our framework performs an outlier detection based on the sample’s feature 

representation using the "non-defect" Isolation Forest model. Depending on an estimated threshold, the distance of the 
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sample’s outlier score with respect to the training data may then be used as an indicator of the validity of the classifier’s 

prediction. Predictions, so identified as potentially invalid, may then be utilized as indicators of a classifier’s conceptional 

inability to recognize novel types of defects, and, hence, potential drift in the data (see figure 2c). 
Fig. 2: a) Example of a typical feed forward convolutional neural network with several interspersed convolutional (blue) and pooling 

(orange) layers, followed by multiple dense layers and a two class softmax layer to close. Extraction of the deep feature embedding 

from the classification head’s penultimate layer (image adapted from [25]). b)  Toy example of identifying an anomalous (purple)  in 

2D space by the number of tree splits needed to isolate it from the population (blue). c) Outlier scores may be used to flag a classifiers’s 

“non-defect” predictions as potentially invalid and to identify data drift. 
 

2.3. Median absolute deviation data drift thresholding and classifier re-training 
Given a trained data drift detector, we need to define an individual threshold on when to flag a production sample as a 

putative outlier for manual inspection. Here we do not impose a prior probability on the class-specific distribution of 

outlier scores from the training set, but propose a common heuristic, that is to calculate the median absolute deviation 

(MAD) [31, 32]. In brief, for a univariate data set 𝑋1, 𝑋2, . . . , 𝑋𝑛, the MAD is defined as 𝑚𝑒𝑑𝑖𝑎𝑛   𝑋𝑖 − 𝑋
¯

   i.e. the 

median of the absolute deviations from the data’s median 𝐻
¯

. Hence, the MAD is a robust measure of statistical dispersion 

and commonly used thresholds for outlier and, hence, drift identification in a distribution are 3.5 MADs. Each so identified 

outlier may be flagged for further inspection. Given that a growing number of instances - so classified to constitute outliers 

- would be observed, these instances should be manually inspected to examine the emergence of data drift. If confirmed, all 

samples containing a new type of error class should be combined with the original training data in order to retrain the 

classifier, either to augment the "defect" class in the original binary classification model, or to define additional defect 

classes and change the classification model into a multi-class setup. 

 

3. Results and Discussion 
We evaluate our approach for two typical in production quality inspection tasks. 

 

3.1. Visual inspection of steel surface defects on the NEU benchmark dataset 
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As a first experiment, we train a classifier for a visual inspection task of steel surface defects. Hence, we resort to a 

typically used benchmark dataset, i.e. the surface defect database from the North-Eastern University (NEU), China[6]. The 

dataset consists of six kinds of typical surface defects of the hot-rolled steel strip, i.e., rolled-in scale, patches, crazing, 

pitted surface, inclusion and scratches (see figure 3 left), including in total 1800 grayscale images of 200 x 200 

dimensionality with 300 samples per class. We separate the set of samples per class into 200 images for training and 100 

for testing, respectively. Fig. 3: Overview of the six kinds of typical surface defects of the hot-rolled steel strip in the NEU 

benchmark dataset [6] (left). Outlier scores based on isolation forest (right) trained on samples of inclusion ("non-defect") using per 

sample latent representation of classifier trained on inclusion ("non-defect") vs. scratches ("defect"). Latent representation spaces 

(penultimate layer) sizes were 8 (a) and 1024 neurons (b). Dashed red vertical lines highlight data drift thresholds, defined as 3.5 

MADs from the median with respect to the "non-defect" training data based outlier score distribution. Compared to the 8 neuron model, 

the drift detector based on 1024 neurons allows for a clear separation between valid and invalid "non-defect" predictions and, thereby, 

the identification of data drift. 
 

As classifier, we use a feed forward convolutional neural network based on the "MobileNet" architecture [33], given 

it’s suitability as a go-to model for app and edge deployment[34]. Further, given the relative small size of our training data 

per class, i.e. 200 samples each, we apply "transfer learning" [35], that is, the original model had been pre-trained on the 

large ImageNet database [36], and, subsequently, we customize and fine-tune the model for our prediction task by freezing 

the weights of the convolutional backbone, and replacing the classification head with a customized one (see figure 2a for a 

general illustration) with a two class output, i.e. "non-defect" vs "defect". We choose the penultimate layer - which later 

serves as the latent representation layer for feature extraction (see figure 2a) - to be a dense layer containing 1024 neurons. 

Model training is performed with a validation split of 20 percent on the training dataset. Given that the original benchmark 

dataset only consists of six defect classes, missing a general "non-defect" class, we need to define such a non-defect class 

for our experiments. In order to evaluate the robustness of our approach, that is to investigate the putative dependencies of 

performance on the specific distributions of selected class pairs, we use the six defect classes to create five representative 

class pairs labelled as "non-defect" and "defect" classes (see 1) and perform individual experiments on each pair. The test 

sets, i.e. 100 images each, of the respective remaining four classes then serve as additional defect types, denoted as out-of-

distribution (OOD) data, to be introduced during our simulated production experiments. Table 1 shows the results of our 

five experiments. Note that the performances of the original binary classifiers, each trained for a given pair of classes, are ≥ 

99 percent on the training and validation datasets across experiments.  

Since we are particularly interested in the proportion of type II errors, that is newly introduced defect types being 

classified as "non-defect" by the classifier, we classify instances from the test sets of the four remaining classes. 
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Throughout the five experiments, we observe type II error rates ranging between 36 and 82 percent (see table 1, column 2). 

This confirms the necessity for a classifier supervision framework to at least inform a user about such critical events of 

covert non-defect mispredictions. Subsequently, we learn our Isolation Forest based drift detection framework using the 

per sample latent representations extracted from the classifier’s penultimate layer, thereby setting the number of trees to be 

100. Using a non-parametric and distribution-free two-sample Kolomogorov-Smirnov test[37], we then examine the 

differences in the resulting distributions of outlier scores between the training and test datasets for the respective "non-

defect" classes, as well as the OOD based distributions (see table 1; Note that a smaller p-value is a higher indicator that 

the Null-hypothesis, i.e. the two samples have been produced by the same distribution, may be rejected). Table 1 highlights 

that in all five experiments, the "non-defect" based outlier distributions of training and test data is more similar - with 

respect to shape and location - than the OOD distribution of "non-defect" predictions. As mentioned before, a data drift 

threshold is defined as 3.5 MADs from the median with respect to the "non-defect" training data based outlier score 

distribution, allowing for detection rate of invalid "non-defect" predictions (i.e. type II errors) of on average 95 percent (see 

table 1, column 6) and, thereby, the identification of data drift (see figure 3). 

Finally, we assume that different penultimate layer sizes may have separate effects on the classifier and the 

supervision model performances. Hence, we further perform a series of qualitative experiments in which the classifier as 

well as the data drift detectors are trained with varying latent representation sizes, i.e. different penultimate layer sizes, 

ranging from dimensionalities of 8 to 1024 neurons. We observe that in all five experiments, while classifier performance 

remain relatively stable, the data drift detection on the introduced OOD datasets typically performs poorly for very small 

penultimate layers (see figure 3a). Hence, for practical deployment of a supervision framework, considerations on how to 

dimension the size of the feature representation space have to be taken into account. 

 
Table 1:  Experiments with models trained on selected class pairs for the NEU benchmark dataset [6]. 

Training classes for classifier 
 

 

Non-defect : Defect 

Type II errors  
(false neg.) 

 

on OOD 

Outlier score distribution similarity 

test (using “non-defect” distributions) 
 

Training vs test      Training vs OOD 

Outlier score threshold 
(3.5 MAD) 

Detection rate of 

type II errors 

Inclusion : Scratches 58 % 
p < 2.5 

−12

 p < 1.9 

−124

 
0.46 99 % 

Patches : Crazing 62 % 
p < 1.5 

−5

 p < 5.5 

−16

 
0.48 77 % 

Inclusion : Crazing 36 % 
p < 4.1 

−8

 p < 4.4 

−16

 
0.44 99 % 

Inclusion : Patches 62 % 
p < 2.5 

−8

 
p = 0 0.46 100 % 

Rolled-in scale : Crazing 82 % 
p < 2.6 

−12

 p < 3.5 

−260

 
0.47 100 % 

 

 

3.2. Visual inspection of steel surface defects on the Xsteel benchmark dataset 
As a second experiment, we resort to another, very recent, benchmark dataset for steel surface defects, the Xsteel 

surface defect dataset [38]. The dataset also consists of typical surface defects of the hot-rolled steel strip, including in total 

1360 grayscale images of 128 x 128 dimensionality, including 238 (slag) inclusions, 397 red iron sheet, 122 iron sheet ash, 

134 (surface) scratches, 63 oxide scale of plate system, 203 finishing roll printing and 203 oxide scale of temperature 

system (see figure 4 left). We separate the set of samples per class into approximately 80 percent of the images for training 

and 20 percent for testing, respectively. As classifier, we use the same, pre-trained, feed forward convolutional neural 

network based on the "MobileNet" architecture [33], as in our first experiment, except that reduced the input dimensions 

from 200 by 200 to 128 by 128. Model training is performed with a validation split of 20 percent on the training dataset. 

As in our first experiment, in order to evaluate the robustness of our approach, that is to investigate the putative 

dependencies of performance on the specific distributions of selected class pairs, we use the seven defect classes to create 
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five representative class pairs labelled as "non-defect" and "defect" classes (see table 2) and perform individual 

experiments on each pair. The test sets of the respective remaining five classes then served as additional defect types, 

denoted as out-of-distribution (OOD) data, to be introduced during our simulated production experiments. Table 2 shows 

the results of our five experiments. Note that the performances of the original binary classifiers, each trained for a given 

pair of classes,  are ≥ 98 percent on the training and validation datasets across experiments. Throughout all experiments, 

type II error rates are ranging between 31 and 65 percent (see table 2, column 2) and, as shown in table 2 and figure 4 

(right), the "non-defect" based outlier distributions of training and test data are, again, found to be more similar than the 

OOD distribution of "non-defect" predictions. As before, a data drift threshold for the Isolation Forest based drift detection 

framework is defined as 3.5 MADs from the median with respect to the "non-defect" training data based outlier score 

distribution, resulting in a detection rate of false negative predictions of on average 82 percent (see table 2, column 6). 

 
Fig. 4: Overview of the seven kinds of surface defects of the hot-rolled steel strip in the XSteel benchmark dataset [38] (left). Outlier 

scores based on isolation forest (right) trained on samples of the respective "non-defect" classes: a) and b) finishing roll printing, c) red 

iron sheet, d) oxide scale of temp. system, e) iron sheet ash) using per sample latent representation of the respective trained classifier. 

Dashed red vertical line highlights data drift threshold, defined as 3.5 MADs from the median with respect to the "non-defect" training 

data based outlier score distribution. 
 

 
Table 2: Experiments with models trained on selected class pairs for the Xsteel benchmark dataset [38]. 

Training classes for classifier 
 

 

Non-defect : Defect 

Type II errors  
(false neg.) 

 

on OOD 

Outlier score distribution similarity 

test (using “non-defect” distributions) 
 

Training vs test      Training vs OOD 

Outlier score threshold 
(3.5 MAD) 

Detection rate of 

type II errors 

Finished roll printing : Iron sheet ash 48 % p < 0.0033  
p = 4.4 

−102 

 
0.47 89 % 

Finished roll printing : Inclusion 31 % p < 0.04  
p < 1.1 

−61 

 
0.45 76 % 

Red iron sheet : Scratches 65 % p < 0.81 p = 0 0.47 49 % 
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Oxide scale of temp. system : 

Oxide scale of plate system 
41 % p < 0.07  

p < 2.9 

−137

 
0.44 99 % 

Iron sheet ash : Oxide scale of plate 

system 
58 % p < 0.031  

  

 
p < 3.3 

−16

 
0.48 97 % 

 

 

4. Conclusion 
One of the main challenges in the automation of condition monitoring and workpiece inspection for high quality, high 

throughput manufacturing is the monitoring of live deployments of assistive machine learning systems to track model 

performance. Here, we addressed this less explored field of production model performance monitoring and proposed an 

unsupervised framework that acts on top of an existing, supervised classification system, thereby harnessing its internal 

deep feature representations as a proxy to track changes in the data distribution during deployment and, hence, to anticipate 

classifier performance degradation. Further, our approach harnesses the classifier’s implicit dimensionality reduction of the 

input feature space and, hence, allows for the use of highly efficient, edge computing capable outlier detection algorithms 

for data drift recognition, resulting in detection rates of false negative predictions of, on average, 82 to 95 percent in our 

experiments. These experiments were performed on two datasets related to automated, visual quality inspection.  

In future work, we would like to extend experimental testing to a wider variety of data types and classifier 

architectures. Further, we plan to analyze the value of model supervision for other relevant tasks in automated quality 

inspection, that is defect localisation and segmentation. We see our approach as a generalizable tool to assist in the 

manufacturing process, avoiding covert mis-predictions and reducing time and costs wasted by allowing for an early 

response to classifier degradation e.g. due to machine malfunctioning, sensor misreadings, environmental effects or 

workpiece quality related emergence of drift in the data distribution. In the words of chess grandmaster Garry Kasparov 

who famously lost to IBM’s ‘Deep Blue ’computer in 1997: "Human plus machine means finding a better way to combine 

better interfaces and better processes." [39] 
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